# A Motivic Pairing and the Mellin Transform in Function Fields

@inproceedings{Green2022AMP, title={A Motivic Pairing and the Mellin Transform in Function Fields}, author={Nathan Green}, year={2022} }

. We deﬁne two pairings relating the A -motive with the dual A -motive of an abelian Anderson A -module. We show that specializations of these pairings give the exponential and logarithm functions of this Anderson A -module, and we use these specializations to give precise formulas for the coeﬃcients of the exponential and logarithm functions. We then use this pairing to express the exponential and logarithm functions as evaluations of certain inﬁnite products. As an application of these ideas…

## References

SHOWING 1-10 OF 26 REFERENCES

### Special zeta values using tensor powers of Drinfeld modules

- MathematicsMathematical Research Letters
- 2019

We study tensor powers of rank 1 sign-normalized Drinfeld A-modules, where A is the coordinate ring of an elliptic curve over a finite field. Using the theory of vector valued Anderson generating…

### Trivial multiple zeta values in Tate algebras

- Mathematics
- 2020

We study trivial multiple zeta values in Tate algebras. These are particular examples of the multiple zeta values in Tate algebras in positive characteristic introduced by the second author. If the…

### On log-algebraic identities for Anderson t-modules and characteristic p multiple zeta values

- Mathematics
- 2020

Based on the notion of Stark units we present a new approach that obtains refinements of log-algebraic identities for Anderson t-modules. As a consequence we establish a generalization of Chang's…

### $t$-Motives: Hodge Structures, Transcendence and Other Motivic Aspects

- Mathematics
- 2020

Drinfeld in 1974, in his seminal paper [10], revolutionized the contribution to arithmetic of the area of global function fields. He introduced a function field analog of elliptic curves over number…

### Values of certain L-series in positive characteristic

- Mathematics
- 2012

We introduce a class of deformations of the values of the Goss zeta function. We prove, with the use of the theory of deformations of vectorial modular forms as well as with other techniques, a…

### Desingularization of complex multiple zeta-functions

- Mathematics
- 2015

We introduce the method of desingularization of multi-variable multiple zeta-functions (of the generalized Euler-Zagier type), under the motivation of finding a suitable rigorous meaning of the…

### Taylor coefficients of t-motivic multiple zeta values and explicit formulae

- Mathematics
- 2019

For each positive characteristic multiple zeta value (defined by Thakur in 2004), the first and third authors recently constructed a t-module such that a certain coordinate of a logarithmic vector of…

### On a conjecture of Furusho over function fields

- Mathematics
- 2017

In the classical theory of multiple zeta values (MZV’s), Furusho proposed a conjecture asserting that the p -adic MZV’s satisfy the same $${\mathbb {Q}}$$ Q -linear relations that their corresponding…

### Appendix. the Mellin Transform and Related Analytic Techniques

- Mathematics

1. The generalized Mellin transformation The Mellin transformation is a basic tool for analyzing the behavior of many important functions in mathematics and mathematical physics, such as the zeta…