A Lyapunov-type Stability Criterion Using L Norms

@inproceedings{Zhang2002ALS,
  title={A Lyapunov-type Stability Criterion Using L Norms},
  author={M. Zhang and LI WEIGU},
  year={2002}
}
Let q(t) be a T -periodic potential such that ∫ T 0 q(t) dt < 0. The classical Lyapunov criterion to stability of Hill’s equation −ẍ + q(t)x = 0 is ‖q−‖1 = ∫ T 0 |q−(t)|dt ≤ 4/T , where q− is the negative part of q. In this paper, we will use a relation between the (anti-)periodic and the Dirichlet eigenvalues to establish some lower bounds for the first anti-periodic eigenvalue. As a result, we will find the best Lyapunov-type stability criterion using Lα norms of q−, 1 ≤ α ≤ ∞. The numerical… CONTINUE READING

Citations

Publications citing this paper.
Showing 1-10 of 18 extracted citations

References

Publications referenced by this paper.
Showing 1-9 of 9 references

The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials

M. Zhang
J. London Math. Soc. 64 • 2001

Nonuniform nonresonance of semilinear differential equations

M. Zhang
J. Differential Equations 166 • 2000

Opial’s inequality and oscillation of 2nd order equations

R. C. Brown, D. B. Hinton
Proc. Amer. Math. Soc. 125 • 1997

Some historic remarks on the Hill equation

S. A. Dovbysh
“Selected Questions of Algebra, Geometry and Discrete Mathematics” • 1992

Asymptotic behavior of stability regions for Hill’s equation

M. I. Weinstein, J. B. Joseph
SIAM J. Appl. Math. 47 • 1987

Estimations asymptotiques des intervalles d’instabilité pour l’equation de Hill

A. Grigis
Ann. Sci. Ec. Norm. Super. IV Ser. 20 • 1987

The mean-square generalized Hill’s equations

S. M. Khrisanov
Ukr. Math. J. 34 • 1983

Hill’s Equations

W. Magnus, S. Winkler
corrected reprint of 1966 edition, Dover, New York • 1979

Extensions of Opial’s inequality

P. R. Beesack, K. M. Das
Pacific J. Math. 26 • 1968

Similar Papers

Loading similar papers…