A Lower Bound for the Number of Reidemeister Moves for Unknotting

@inproceedings{Hayashi2004ALB,
  title={A Lower Bound for the Number of Reidemeister Moves for Unknotting},
  author={Chuichiro Hayashi},
  year={2004}
}
How many Reidemeister moves do we need for unknotting a given diagram of the trivial knot? Hass and Lagarias gave an upper bound. We give an upper bound for deforming a diagram of a split link to be disconnected. On the other hand, the absolute value of the writhe gives a lower bound of the number of Reidemeister I moves for unknotting. That of a complexity of knot diagram “cowrithe” works for Reidemeister II, III moves. We give an example of an infinite sequence of diagrams Dn of the trivial… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Invariants of knot diagrams and relations among Reidemeister moves

  • O.-P. Östlund
  • J. Knot Theory Ramifications
  • 2001
1 Excerpt

Lagarias , The number of Reidemeister moves needed for unknotting

  • J. Hass, J.
  • J . Amer . Math . Soc .
  • 2001

Viro , On the Casson knot invariant

  • M. Polyak, O.
  • J . Knot Theory Ramifications
  • 2001

Östlund , Invariants of knot diagrams and relations among Reidemeister moves

  • O.-P.
  • J . Knot Theory Ramifications
  • 2001

On a problem in effective knot theory

  • S. Galatolo
  • Rendiconti dell Accademia dei Lincei
  • 1999
1 Excerpt

Gauss diagram formulas for Vassiliev invariants

  • M. Polyak, O. Viro
  • Internat . Math . Res . Notices
  • 1994

Viro, Gauss diagram formulas for Vassiliev invariants

  • O. M. Polyak
  • Internat. Math. Res. Notices 1994,
  • 1994
1 Excerpt

Elementare Beründang der Knotentheorie

  • K. Reidemeister
  • Abh. Math. Sem. Univ. Hamburg
  • 1926
1 Excerpt

Similar Papers

Loading similar papers…