A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$
@article{Chen2014ALT, title={A Liouville theorem for \$\alpha\$-harmonic functions in \$\mathbb\{R\}^n_+\$}, author={Wenxiong Chen and C. Li and L. Zhang and T. Cheng}, journal={arXiv: Analysis of PDEs}, year={2014} }
In this paper, we consider $\alpha$-harmonic functions in the half space $\mathbb{R}^n_+$: \begin{equation} \left\{\begin{array}{ll} (-\Delta)^{\alpha/2} u(x)=0,~u(x)>0, & x\in\mathbb{R}^n_+, \\ u(x)\equiv 0, & x\notin \mathbb{R}^{n}_{+}. \end{array}\right. \end{equation} We prove that all the solutions have to assume the form
\begin{equation} u(x)=\left\{\begin{array}{ll}Cx_n^{\alpha/2}, & \qquad x\in\mathbb{R}^n_+, \\ 0, & \qquad x\notin\mathbb{R}^{n}_{+}, \end{array}\right. \label{2} \end… CONTINUE READING
14 Citations
Liouville type theorems for fractional and higher order Hénon-Hardy type equations via the method of scaling spheres
- Mathematics
- 2018
- 8
- PDF
Liouville type theorem for critical order Hénon-Lane-Emden type equations on a half space and its applications
- Mathematics
- 2018
- 3
Liouville theorem for fractional Hénon–Lane–Emden systems on a half space
- Mathematics
- Proceedings of the Royal Society of Edinburgh: Section A Mathematics
- 2020
Liouville type theorems for the system of fractional nonlinear equations in R+n${R^{n}_{+}}$
- Mathematics
- 2016
- 1
References
SHOWING 1-10 OF 25 REFERENCES
Representation Formulae for Solutions to Some Classes of Higher Order Systems and Related Liouville Theorems
- Mathematics
- 2008
- 62
Regularity of the obstacle problem for a fractional power of the laplace operator
- Mathematics
- 2007
- 774
- PDF
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary
- Physics, Mathematics
- 2012
- 482
- PDF