A LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD FOR SOLID MECHANICS PROBLEMS

@inproceedings{Liu2006ALC,
  title={A LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD FOR SOLID MECHANICS PROBLEMS},
  author={Guirong Liu and Y. L. and Kai Yu Dai},
  year={2006}
}
A linearly conforming radial point interpolation method (LC-RPIM) is presented for stress analysis of two-dimensional solids. In the LC-RPIM method, each field node is enclosed by a Voronoi polygon, and the displacement field function is approximated using RPIM shape functions of Kronecker delta function property created by simple interpolation using local nodes and radial basis functions augmented with linear polynomials to guarantee linear consistency. The system equations are then derived… CONTINUE READING

Citations

Publications citing this paper.
SHOWING 1-10 OF 22 CITATIONS

References

Publications referenced by this paper.
SHOWING 1-10 OF 16 REFERENCES

Meshfree Methods, Moving Beyond the Finite Element Method (CRC Press Publication)

  • G. R. Liu
  • 2003
Highly Influential
10 Excerpts

A stabilized conforming nodal integration for Galerkin mesh-free methods,

  • J. S. Chen, C. T. Wu, S. Yoon, Y. You
  • Int. J. Num. Methods Eng
  • 2001
Highly Influential
7 Excerpts

Some recent results and proposals for the use of radial basis functions in the BEM,

  • M. A. Golberg, C. S. Chen, S. R. Karur
  • Eng. Anal. Bound. Ele
  • 1996
Highly Influential
4 Excerpts

Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods,

  • J. S. Chen, S. Yoon, C. T. Wu
  • Int. J. Num. Methods Eng
  • 2002
3 Excerpts

On the optimal shape parameters of radial basis functions used for 2-D meshless methods,

  • J. G. Wang, G. R. Liu
  • Comput. Methods Appl. Mech. Eng
  • 2002
1 Excerpt

A point interpolation method for two-dimensional solid,

  • G. R. Liu, Y. T. Gu
  • Int. J. Num. Methods Eng
  • 2001
1 Excerpt

Similar Papers

Loading similar papers…