# A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo

@article{Collaboration2019AGM, title={A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo}, author={The Ligo Scientific Collaboration and T. Abbott and R. Abbott and S. Abraham and F. Acernese and K. Ackley and C. Adams and R. Adhikari and V. Adya and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and O. Aguiar and L. Aiello and A. Ain and P. Ajith and G. Allen and A. Allocca and M. Aloy and P. Altin and A. Amato and S. Anand and A. Ananyeva and S. Anderson and W. Anderson and S. Angelova and S. Antier and S. Appert and K. Arai and M. Araya and J. Areeda and M. Ar{\`e}ne and N. Arnaud and S. M. Aronson and K. Arun and S. Ascenzi and G. Ashton and S. Aston and P. Astone and F. Aubin and P. Aufmuth and K. AultONeal and C. Austin and V. Avendano and A. {\'A}vila-{\'A}lvarez and S. Babak and P. Bacon and F. Badaracco and M. Bader and S. Bae and J. Baird and P. Baker and F. Baldaccini and G. Ballardin and S. Ballmer and A. Bals and S. Banagiri and J. Barayoga and C. Barbieri and S. Barclay and B. Barish and D. Barker and K. Barkett and S. Barnum and F. Barone and B. Barr and L. Barsotti and M. Barsuglia and D. Barta and J. Bartlett and I. Bartos and R. Bassiri and A. Basti and M. Bawaj and J. Bayley and M. Bazzan and B. B'ecsy and M. Bejger and I. Belahcene and A. Bell and D. Beniwal and M. Benjamin and B. K. Berger and G. Bergmann and S. Bernuzzi and C. Berry and D. Bersanetti and A. Bertolini and J. Betzwieser and R. Bhandare and J. Bidler and E. Biggs and I. Bilenko and S. Bilgili and G. Billingsley and R. Birney and O. Birnholtz and S. Biscans and M. Bischi and S. Biscoveanu and A. Bisht and M. Bitossi and M. Bizouard and J. Blackburn and J. Blackman and C. Blair and D. Blair and R. Blair and S. Bloemen and F. Bobba and N. Bode and M. Boer and Y. Boetzel and G. Bogaert and F. Bondu and R. Bonnand and P. Booker and B. A. Boom and R. Boschi and S. Bose and V. Bossilkov and J. Bosveld and Y. Bouffanais and A. Bozzi and C. Bradaschia and P. Brady and A. Bramley and M. Branchesi and J. Brau and M. Breschi and T. Briant and J. Briggs and F. Brighenti and A. Brillet and M. Brinkmann and P. Brockill and A. Brooks and J. Brooks and D. Brown and S. Brunett and A. Buikema and T. Bulik and H. Bulten and A. Buonanno and D. Buskulic and C. Buy and R. Byer and M. Cabero and L. Cadonati and G. Cagnoli and C. Cahillane and J. Bustillo and T. Callister and E. Calloni and J. Camp and W. Campbell and M. Canepa and K. Cannon and H. Cao and J. Cao and G. Carapella and F. Carbognani and S. Caride and M. Carney and Gregorio Carullo and J. Diaz and C. Casentini and S. Caudill and M. Cavagli{\`a} and F. Cavalier and R. Cavalieri and G. Cella and P. Cerd'a-Dur'an and E. Cesarini and O. Chaibi and K. Chakravarti and S. Chamberlin and M. Chan and S. Chao and P. Charlton and E. Chase and {\'E}. Chassande-Mottin and D. Chatterjee and M. Chaturvedi and B. Cheeseboro and H. Chen and X. Chen and Y. Chen and H-P. Cheng and C. Cheong and H. Chia and F. Chiadini and A. Chincarini and A. Chiummo and G. Cho and H. Cho and M. Cho and N. Christensen and Q. Chu and S. Chua and K. Chung and S. Chung and G. Ciani and M. Cie'slar and A. Ciobanu and R. Ciolfi and F. Cipriano and A. Cirone and F. Clara and J. Clark and P. Clearwater and F. Cleva and E. Coccia and P. Cohadon and D. Cohen and M. Colleoni and C. Collette and C. Collins and M. Colpi and L. Cominsky and M. Constancio and L. Conti and S. Cooper and P. Corban and T. Corbitt and I. Cordero-Carri'on and S. Corezzi and K. Corley and N. Cornish and D. Corre and A. Corsi and S. Cortese and C. Costa and R. Cotesta and M. Coughlin and S. Coughlin and J. Coulon and S. Countryman and P. Couvares and P. B. Covas and E. Cowan and D. Coward and M. Cowart and D. Coyne and R. Coyne and J. Creighton and T. Creighton and J. Cripe and M. Croquette and S. Crowder and T. Cullen and A. Cumming and L. Cunningham and E. Cuoco and T. Canton and G. D'alya and B. D'Angelo and S. Danilishin and S. D’Antonio and K. Danzmann and A. Dasgupta and C. F. S. Costa and L. Datrier and V. Dattilo and I. Dave and M. Davier and D. Davis and E. Daw and D. DeBra and M. Deenadayalan and J. Degallaix and M. D. Laurentis and S. Del'eglise and W. D. Pozzo and L. DeMarchi and N. Demos and T. Dent and R. Pietri and R. Rosa and C. D. Rossi and R. DeSalvo and O. D. Varona and S. Dhurandhar and M. D'iaz and T. Dietrich and L. Fiore and C. DiFronzo and C. Giorgio and F. D. Giovanni and M. D. Giovanni and T. D. Girolamo and A. Lieto and B. Ding and S. D. Pace and I. Palma and F. Renzo and A. K. Divakarla and A. Dmitriev and Zoheyr Doctor and F. Donovan and K. Dooley and S. Doravari and I. Dorrington and T. Downes and M. Drago and J. Driggers and Z. Du and J. Ducoin and P. Dupej and O. Durante and S. Dwyer and P. Easter and G. Eddolls and T. Edo and A. Effler and P. Ehrens and J. Eichholz and S. Eikenberry and M. Eisenmann and R. Eisenstein and L. Errico and R. Essick and H. Estell{\'e}s and D. Estevez and Z. Etienne and T. Etzel and M. Evans and T. Evans and V. Fafone and S. Fairhurst and X. Fan and S. Farinon and B. Farr and W. Farr and E. Fauchon-Jones and M. Favata and M. Fays and M. Fazio and C. Fee and J. Feicht and M. Fejer and F. Feng and {\'A}. Fern{\'a}ndez-Galiana and I. Ferrante and E. C. Ferreira and T. A. Ferreira and F. Fidecaro and I. Fiori and D. Fiorucci and M. Fishbach and R. Fisher and J. Fishner and R. Fittipaldi and M. Fitz-Axen and V. Fiumara and R. Flaminio and M. Fletcher and E. Floden and E. Flynn and H. Fong and J. Font and P. Forsyth and J. Fournier and F. Vivanco and S. Frasca and F. Frasconi and Z. Frei and A. Freise and R. Frey and V. Frey and P. Fritschel and V. Frolov and G. Fronz{\'e} and P. Fulda and M. Fyffe and H. Gabbard and B. Gadre and S. Gaebel and J. Gair and L. Gammaitoni and S. Gaonkar and C. Garc'ia-Quir'os and F. Garufi and B. Gateley and S. Gaudio and G. Gaur and V. Gayathri and G. Gemme and E. G{\'e}nin and A. Gennai and D. George and J. George and L. Gergely and S. Ghonge and Abhirup Ghosh and Archisman Ghosh and S. Ghosh and B. Giacomazzo and J. Giaime and K. Giardina and D. Gibson and K. Gill and L. Glover and J. Gniesmer and P. Godwin and E. Goetz and R. Goetz and B. Goncharov and G. Gonz'alez and J. M. Castro and A. Gopakumar and S. Gossan and M. Gosselin and R. Gouaty and B. Grace and A. Grado and M. Granata and A. Grant and S. Gras and P. Grassia and C. Gray and R. Gray and G. Greco and A. Green and R. Green and E. Gretarsson and A. Grimaldi and S. Grimm and P. Groot and H. Grote and S. Grunewald and P. Gruning and G. Guidi and H. Gulati and Y. Guo and A. Gupta and Anchal Gupta and P. Gupta and E. Gustafson and R. Gustafson and L. Haegel and O. Halim and B. Hall and E. Hall and E. Hamilton and G. Hammond and M. Haney and M. Hanke and J. Hanks and C. Hanna and M. Hannam and O. Hannuksela and T. Hansen and J. Hanson and T. Harder and T. Hardwick and K. Haris and J. Harms and G. Harry and I. Harry and R. Hasskew and C. Haster and K. Haughian and F. Hayes and J. Healy and A. Heidmann and M. Heintze and H. Heitmann and F. Hellman and P. Hello and G. Hemming and M. Hendry and I. Heng and J. Hennig and M. Heurs and S. Hild and T. Hinderer and S. Hochheim and D. Hofman and A. M. Holgado and N. Holland and K. Holt and D. Holz and P. Hopkins and C. Horst and J. Hough and E. Howell and C. Hoy and Y. Huang and M. Hubner and E. Huerta and D. Huet and B. Hughey and V. Hui and S. Husa and S. Huttner and T. Huynh--Dinh and B. Idzkowski and A. Iess and H. Inchauspe and C. Ingram and R. Inta and G. Intini and B. Irwin and H. N. Isa and J. Isac and M. Isi and B. Iyer and T. Jacqmin and S. Jadhav and K. Jani and N. N. Janthalur and P. Jaranowski and D. Jariwala and A. Jenkins and J. Jiang and D. S. Johnson and A. Jones and D. Jones and J. Jones and R. Jones and R. Jonker and L. Ju and J. Junker and C. Kalaghatgi and V. Kalogera and B. Kamai and S. Kandhasamy and G. Kang and J. Kanner and S. Kapadia and S. Karki and R. Kashyap and M. Kasprzack and S. Katsanevas and E. Katsavounidis and W. Katzman and S. Kaufer and K. Kawabe and N. Keerthana and F. K'ef'elian and D. Keitel and R. Kennedy and J. Key and F. Khalili and I. Khan and S. Khan and E. Khazanov and N. Khetan and M. Khursheed and N. Kijbunchoo and Chunglee Kim and J. Kim and K. Kim and W. Kim and Y.-M. Kim and C. Kimball and P. King and M. Kinley-Hanlon and R. Kirchhoff and J. Kissel and L. Kleybolte and J. Klika and S. Klimenko and T. Knowles and P. Koch and S. Koehlenbeck and G. Koekoek and S. Koley and V. Kondrashov and A. Kontos and N. Koper and M. Korobko and W. Korth and M. Kovalam and D. Kozak and C. Kramer and V. Kringel and N. Krishnendu and A. Kr'olak and N. Krupinski and G. Kuehn and A. Kumar and P. Kumar and Rahul Kumar and Rakesh Kumar and L. Kuo and A. Kutynia and S. Kwang and B. Lackey and D. Laghi and K. Lai and T. Lam and M. Landry and B. Lane and R. Lang and J. Lange and B. Lantz and R. Lanza and A. Lartaux-Vollard and P. Lasky and M. Laxen and A. Lazzarini and C. Lazzaro and P. Leaci and S. Leavey and Y. Lecoeuche and C. Lee and H. Lee and H. W. Lee and J. Lee and K. Lee and J. Lehmann and A. Lenon and N. Leroy and N. Letendre and Y. Levin and A. Li and J. Li and K. Li and T. Li and X. Li and F. Lin and F. Linde and S. Linker and T. Littenberg and J. Liu and X. Liu and M. Llorens-Monteagudo and R. K. Lo and L. London and A. Longo and M. Lorenzini and V. Loriette and M. Lormand and G. Losurdo and J. Lough and C. Lousto and G. Lovelace and M. Lower and H. Luck and D. Lumaca and A. Lundgren and R. Lynch and Y. Ma and R. Macas and S. Macfoy and M. Macinnis and D. Macleod and A. Macquet and I. M. Hernandez and F. Maga{\~n}a-Sandoval and R. Magee and E. Majorana and I. Maksimovic and A. Malik and N. Man and V. Mandic and V. Mangano and G. Mansell and M. Manske and M. Mantovani and M. Mapelli and F. Marchesoni and F. Marion and S. M'arka and Z. M'arka and C. Markakis and A. Markosyan and A. Markowitz and E. Maros and A. Marquina and S. Marsat and F. Martelli and I. Martin and R. Martin and V. Martinez and D. Martynov and H. Masalehdan and K. Mason and E. Massera and A. Masserot and T. Massinger and M. Masso-Reid and S. Mastrogiovanni and A. Matas and F. Matichard and L. Matone and N. Mavalvala and J. McCann and R. McCarthy and D. McClelland and S. McCormick and L. McCuller and S. McGuire and C. McIsaac and J. Mciver and D. McManus and T. Mcrae and S. McWilliams and D. Meacher and G. Meadors and M. Mehmet and A. Mehta and J. Meidam and E. M. Villa and A. Melatos and G. Mendell and R. Mercer and L. Mereni and K. Merfeld and E. Merilh and M. Merzougui and S. Meshkov and C. Messenger and C. Messick and F. Messina and R. Metzdorff and P. Meyers and F. Meylahn and A. Miani and H. Miao and C. Michel and H. Middleton and L. Milano and A. Miller and M. Millhouse and J. Mills and M. Milovich-Goff and O. Minazzoli and Y. Minenkov and A. Mishkin and C. Mishra and T. Mistry and S. Mitra and V. Mitrofanov and G. Mitselmakher and R. Mittleman and G. Mo and D. Moffa and K. Mogushi and S. Mohapatra and M. Molina-Ruiz and M. Mondin and M. Montani and C. Moore and D. Moraru and F. Morawski and G. Moreno and S. Morisaki and B. Mours and C. Mow-Lowry and F. Muciaccia and A. Mukherjee and D. Mukherjee and S. Mukherjee and N. Mukund and A. Mullavey and J. Munch and E. Muniz and M. Muratore and P. Murray and A. Nagar and I. Nardecchia and L. Naticchioni and R. Nayak and B. Neil and J. Neilson and G. Nelemans and T. Nelson and M. Nery and A. Neunzert and L. Nevin and K. Ng and S. Ng and C. Nguyen and P. Nguyen and D. Nichols and S. Nichols and S. Nissanke and F. Nocera and C. North and L. Nuttall and M. Obergaulinger and J. Oberling and B. O'Brien and G. Oganesyan and G. Ogin and J. J. Oh and S. Oh and F. Ohme and H. Ohta and M. A. Okada and M. Oliver and P. Oppermann and R. Oram and B. O'reilly and R. Ormiston and L. F. Ortega and R. O’Shaughnessy and S. Ossokine and D. Ottaway and H. Overmier and B. Owen and A. Pace and G. Pagano and M. Page and G. Pagliaroli and A. Pai and S. Pai and J. Palamos and O. Palashov and C. Palomba and H. Pan and P. K. Panda and P. T. Pang and C. Pankow and F. Pannarale and B. Pant and F. Paoletti and A. Paoli and A. Parida and W. Parker and D. Pascucci and A. Pasqualetti and R. Passaquieti and D. Passuello and M. Patil and B. Patricelli and E. Payne and B. Pearlstone and T. C. Pechsiri and A. J. Pedersen and M. Pedraza and R. Pedurand and A. Pele and S. Penn and A. Perego and C. Perez and C. P'erigois and A. Perreca and J. Petermann and H. Pfeiffer and M. Phelps and K. S. Phukon and O. Piccinni and M. Pichot and F. Piergiovanni and V. Pierro and G. Pillant and L. Pinard and I. Pinto and M. Pirello and M. Pitkin and W. Plastino and R. Poggiani and D. Pong and S. Ponrathnam and P. Popolizio and E. Porter and J. Powell and A. K. Prajapati and J. Prasad and K. Prasai and R. Prasanna and G. Pratten and T. Prestegard and M. Principe and G. Prodi and L. Prokhorov and M. Punturo and P. Puppo and M. Purrer and H. Qi and V. Quetschke and P. J. Quinonez and F. Raab and G. Raaijmakers and H. Radkins and N. Radulesco and P. Raffai and S. Raja and C. Rajan and B. Rajbhandari and M. Rakhmanov and K. Ramirez and A. Ramos-Buades and J. Rana and K. Rao and P. Rapagnani and V. Raymond and M. Razzano and J. Read and T. Regimbau and L. Rei and S. Reid and D. Reitze and P. Rettegno and F. Ricci and C. J. Richardson and J. Richardson and P. Ricker and G. Riemenschneider and K. Riles and M. Rizzo and N. Robertson and F. Robinet and A. Rocchi and L. Rolland and J. Rollins and V. Roma and M. Romanelli and J. Romano and R. Romano and C. Romel and J. Romie and C. A. Rose and D. Rose and K. Rose and D. Rosi'nska and S. Rosofsky and M. Ross and S. Rowan and A. Rudiger and P. Ruggi and G. Rutins and K. Ryan and S. Sachdev and T. Sadecki and M. Sakellariadou and O. Salafia and L. Salconi and M. Saleem and A. Samajdar and L. Sammut and E. Sanchez and L. Sanchez and N. Sanchis-Gual and J. Sanders and K. A. Santiago and E. Santos and N. Sarin and B. Sassolas and B. Sathyaprakash and O. Sauter and R. Savage and P. Schale and M. Scheel and J. Scheuer and P. Schmidt and R. Schnabel and R. Schofield and A. Schonbeck and E. Schreiber and B. Schulte and B. Schutz and J. Scott and S. Scott and E. Seidel and D. Sellers and A. Sengupta and N. Sennett and D. Sentenac and V. Sequino and A. Sergeev and Y. Setyawati and D. Shaddock and T. Shaffer and M. Shahriar and M. Shaner and A. Sharma and P. Sharma and P. Shawhan and H. Shen and R. Shink and D. Shoemaker and K. Shukla and S. Shyamsundar and K. Siellez and M. Sieniawska and D. Sigg and L. Singer and D. Singh and N. Singh and A. Singhal and A. Sintes and S. Sitmukhambetov and V. Skliris and B. Slagmolen and T. Slaven-Blair and J. Smith and R. Smith and S. Somala and E. Son and S. Soni and B. Sorazu and F. Sorrentino and T. Souradeep and E. Sowell and A. Spencer and M. Spera and A. Srivastava and V. Srivastava and K. Staats and C. Stachie and M. Standke and D. Steer and M. Steinke and J. Steinlechner and S. Steinlechner and D. Steinmeyer and S. Stevenson and D. Stocks and R. Stone and D. Stops and K. Strain and G. Stratta and S. Strigin and A. Strunk and R. Sturani and A. Stuver and V. Sudhir and T. Summerscales and L. Sun and S. Sunil and A. Sur and J. Suresh and P. Sutton and B. Swinkels and M. J. Szczepa'nczyk and M. Tacca and S. Tait and C. Talbot and D. Tanner and D. Tao and M. T'apai and A. Tapia and J. Tasson and R. Taylor and R. Tenorio and L. Terkowski and M. Thomas and P. Thomas and S. R. Thondapu and K. Thorne and E. Thrane and S. Tiwari and V. Tiwari and K. Toland and M. Tonelli and Z. Tornasi and A. Torres-Forn'e and C. Torrie and D. Toyra and F. Travasso and G. Traylor and M. Tringali and A. Tripathee and A. Trovato and L. Trozzo and K. W. Tsang and M. Tse and R. Tso and L. Tsukada and D. Tsuna and T. Tsutsui and D. Tuyenbayev and K. Ueno and D. Ugolini and C. Unnikrishnan and A. Urban and S. A. Usman and H. Vahlbruch and G. Vajente and G. Valdes and M. Valentini and N. Bakel and M. Beuzekom and J. Brand and C. Broeck and D. Vander-Hyde and L. Schaaf and J. VanHeijningen and A. Veggel and M. Vardaro and V. Varma and S. Vass and M. Vas'uth and A. Vecchio and G. Vedovato and J. Veitch and P. Veitch and K. Venkateswara and Gautam Venugopalan and D. Verkindt and F. Vetrano and A. Vicer'e and A. Viets and S. Vinciguerra and D. Vine and J. Vinet and S. Vitale and T. Vo and H. Vocca and C. Vorvick and S. Vyatchanin and A. Wade and L. Wade and M. Wade and R. Walet and M. Walker and L. Wallace and S. Walsh and H. Wang and J. Wang and S. Wang and W. Wang and Y. F. Wang and R. Ward and Z. A. Warden and J. Warner and M. Was and J. Watchi and B. Weaver and L.-W. Wei and M. Weinert and A. Weinstein and R. Weiss and F. Wellmann and L. Wen and E. Wessel and P. Wessels and J. Westhouse and K. Wette and J. Whelan and B. Whiting and C. Whittle and D. Wilken and D. Williams and A. Williamson and J. Willis and B. Willke and W. Winkler and C. Wipf and H. Wittel and G. Woan and J. Woehler and J. Wofford and J. Wright and D. Wu and D. Wysocki and S. Xiao and R. Xu and H. Yamamoto and C. Yancey and L. Yang and Y. Yang and Z. Yang and M. J. Yap and M. Yazback and D. W. Yeeles and Hang Yu and Haocun Yu and S. Yuen and A. Zadro.zny and M. Zanolin and T. Zelenova and J. Zendri and M. Zevin and J. Zhang and L. Zhang and T. Zhang and C. Zhao and G. Zhao and M. Zhou and Z. Zhou and X. Zhu and A. Zimmerman and M. Zucker and J. Zweizig}, journal={The Astrophysical Journal}, year={2019}, volume={909} }

This paper presents the gravitational-wave measurement of the Hubble constant (H 0) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of H 0. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is H 0 = 69… Expand

#### 61 Citations

A Measurement of the Hubble Constant using Gravitational Waves from the Neutron-Star Black-Hole Candidate GW190814

- Physics
- 2020

We present a test of the statistical method introduced by Bernard F. Shutz in 1986 using only gravitational waves to infer the Hubble constant (H$_0$) from GW190814, the first first high-probability… Expand

A Future Percent-Level Measurement of the Hubble Expansion at Redshift 0.8 With Advanced LIGO

- Physics
- 2019

Simultaneous measurements of distance and redshift can be used to constrain the expansion history of the universe and associated cosmological parameters. Merging binary black hole (BBH) systems are… Expand

Astrophysics and cosmology with a decihertz gravitational-wave detector: TianGO

- Physics
- 2020

We present the astrophysical science case for a space-based, decihertz gravitational-wave (GW) detector. We particularly highlight an ability to infer a source’s sky location, both when combined with… Expand

The missing link in gravitational-wave astronomy

- Physics
- 2021

Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories… Expand

GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object

- Physics
- 2020

We report the observation of a compact binary coalescence involving a 22.2–24.3 M ⊙ black hole and a compact object with a mass of 2.50–2.67 M ⊙ (all measurements quoted at the 90% credible level).… Expand

Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences

- Physics
- 2021

We report the observation of gravitational waves from two compact binary coalescences in LIGO’s and Virgo’s third observing run with properties consistent with neutron star–black hole (NSBH)… Expand

Velocity debiasing for Hubble constant measurements from standard sirens

- Physics
- 2019

Gravitational wave (GW) sources are an excellent probe of the luminosity distance and offer a novel measure of the Hubble constant, $H_0$. This estimation of $H_0$ from standard sirens requires an… Expand

Combining gravitational and electromagnetic waves observations to investigate the Hubble tension

- Physics
- 2019

Recent estimations of the Hubble parameter $H_0$ based on gravitational waves (GW) observations confirm the discrepancy between the value obtained from large scale and small scale observations, such… Expand

Measuring the Hubble Constant from the Cooling of the CMB Monopole

- Physics
- 2019

The cosmic microwave background (CMB) monopole temperature evolves with the inverse of the cosmological scale factor, independent of many cosmological assumptions. With sufficient sensitivity,… Expand

Gravitational-wave physics and astronomy in the 2020s and 2030s

- Physics
- 2021

The 100 years since the publication of Albert Einstein’s theory of general relativity saw significant development of the understanding of the theory, the identification of potential astrophysical… Expand

#### References

SHOWING 1-10 OF 95 REFERENCES

First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary-Black-hole Merger GW170814

- Physics
- 2019

We present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy… Expand

Determining the Hubble constant from gravitational wave observations of merging compact binaries

- Physics
- 2013

Recent observations have accumulated compelling evidence that some short gamma-ray bursts (SGRBs) are associated with the mergers of neutron star (NS) binaries. This would indicate that the SGRB… Expand

A two per cent Hubble constant measurement from standard sirens within five years

- Physics, Medicine
- Nature
- 2018

It is shown that additional gravitational-wave detections by LIGO and Virgo can be expected to constrain the Hubble constant to a precision of approximately two per cent within five years and approximately one per% within a decade. Expand

Binary Black Hole Mergers in the First Advanced LIGO Observing Run

- Physics
- 2016

The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper… Expand

Cosmology using advanced gravitational-wave detectors alone

- Physics
- 2012

We investigate a novel approach to measuring the Hubble constant using gravitational-wave (GW) signals from compact binaries by exploiting the narrowness of the distribution of masses of the… Expand

A Future Percent-Level Measurement of the Hubble Expansion at Redshift 0.8 With Advanced LIGO

- Physics
- 2019

Simultaneous measurements of distance and redshift can be used to constrain the expansion history of the universe and associated cosmological parameters. Merging binary black hole (BBH) systems are… Expand

Short GRB and binary black hole standard sirens as a probe of dark energy

- Physics
- 2006

Observations of the gravitational radiation from well-localized, inspiraling compact-object binaries can measure absolute source distances with high accuracy. When coupled with an independent… Expand

A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart

- Physics
- 2019

We perform a statistical standard siren analysis of GW170817. Our analysis does not utilize knowledge of NGC 4993 as the unique host galaxy of the optical counterpart to GW170817. Instead, we… Expand

First cosmological results using Type Ia supernovae from the Dark Energy Survey: Measurement of the Hubble constant

- Physics
- 2019

We present an improved measurement of the Hubble constant (H0) using the 'inverse distance ladder' method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey… Expand

Measuring the Hubble Constant with Neutron Star Black Hole Mergers.

- Physics, Medicine
- Physical review letters
- 2018

Better distance measurement, the larger gravitational-wave detectable volume, and the potentially bright electromagnetic emission imply that spinning black hole neutron star binaries can be the optimal standard-siren sources as long as their astrophysical rate is larger than O(10) Gpc^{-3} yr^{-1}, a value allowed by current astrophysical constraints. Expand