A Global Theory of Steady Vortex Rings in an Ideal Fluid

  title={A Global Theory of Steady Vortex Rings in an Ideal Fluid},
  author={BY L. E. FRAENKEL and M. S. Berger},
The question of whether the equations governing the motion of an inviscid, incompressible fluid admit solutions representing steady vortex rings has not been studied widely, despite the central place of such rings in the theory of vortex motion initiated by Helmholtz [1] in 1858. Hill [2] discovered in 1894 an explicit particular solution for which the 'ring' is actually a ball in R. More recently, there have appeared local existence proofs for (a) steady rings of small cross-section [3], [4… CONTINUE READING
Highly Cited
This paper has 17 citations. REVIEW CITATIONS
12 Citations
7 References
Similar Papers


Publications referenced by this paper.
Showing 1-7 of 7 references

A steady vortex ring close to Hill's spherical vortex

  • J. Norbury
  • Proc. Cambridge Philos. Soc
  • 1972
1 Excerpt

On steady vortex rings of small cross-section in an ideal fluid

  • L. E. Fraenkel
  • Proc. Roy. Soc. London
  • 1970
1 Excerpt

Variational methods for the study of nonlinear operators, Holden-Day

  • M. M. Vainberg
  • San Francisco,
  • 1964
2 Excerpts

Über die Existenz stationarer Bewegungen von Wirbelringen

  • K. Maruhn
  • Proc. Ninth International Congress Appl. Mech…
  • 1957
1 Excerpt

Isoperimetric inequalities in mathematical physics, Annals of Math

  • G. Pólya, G. Szegö
  • Studies, no. 27. Princeton Univ. Press, Princeton…
  • 1951
2 Excerpts

Über einige Existenzprobleme der Hydrodynamik

  • L. Lichtenstein
  • Math. Z
  • 1925
1 Excerpt

Generalized subharmonic functions

  • W. Littman
  • Monotonie approximations and an improved maximum…
  • 1003
3 Excerpts

Similar Papers

Loading similar papers…