A Generalized Van Kampen-flores Theorem

@inproceedings{Sarkaria2010AGV,
  title={A Generalized Van Kampen-flores Theorem},
  author={Karanbir S. Sarkaria and Frederick R. Cohen},
  year={2010}
}
The «-skeleton of a (2« + 2)-simplex does not embed in R " . This well-known result is due (independently) to van Kampen, 1932, and Flores, 1933, who proved the case p = 2 of the following: Theorem. Let p be a prime, and let s and I be positive integers such that l(P 1) < P{s 1). Then, for any continuous map f from a (ps + p 2)dimensional simplex into R , there must exist p points {xx, ... , x } , lying in pairwise disjoint faces of dimensions < s 1 of this simplex, such that f(xx… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 10 references

Mengen konvexer Körper, die einen gemeinsamen

  • J. Radon
  • Punkt enthalten, Math. Ann
  • 1921
Highly Influential
9 Excerpts

Simple proofs of some Borsuk-Ulam results, Contemp

  • A. Dold
  • Math., vol. 19, Amer. Math. Soc,
  • 1983
Highly Influential
4 Excerpts

Drei Sätze über die n-dimensionale euklidische Sphäre

  • K. Borsuk
  • Fund. Math
  • 1933
Highly Influential
6 Excerpts

On a common generalization ofBorsuk's and Radon's theo- rem

  • E. G. Bajmóczy, I. Bárány
  • Acta Math. Acad. Sei. Hungar
  • 1979
Highly Influential
4 Excerpts

A generalization of Radon's theorem

  • H. Tverberg
  • J. London Math. Soc
  • 1966
Highly Influential
5 Excerpts

Über n-dimensionale Komplexe die im R2n+\ absolut selbstverschlungen sind

  • A. Flores
  • Ergeb. Math. Kolloq
  • 1933
Highly Influential
4 Excerpts

Komplexe in euklidischen Räumen

  • E. R. van Kampen
  • Abh. Math. Sem. Hamburg
  • 1932
Highly Influential
5 Excerpts

Sziics, On a topological generalization of a theorem of Tverberg

  • I. Bárány, A.S.B. Shlosman
  • J. London Math. Soc. (2)
  • 1981
1 Excerpt

Plongements de polyèdres dans le domaine métastable

  • C. Weber
  • Comment. Math. Helv
  • 1967
1 Excerpt

A theory of imbedding, immersion, and isotopy ofpolytopes in a Euclidean space, Science Press, Peking

  • W.-T. Wu
  • 1965
1 Excerpt

Similar Papers

Loading similar papers…