A Generalized Forward-Backward Splitting

@article{Raguet2013AGF,
  title={A Generalized Forward-Backward Splitting},
  author={Hugo Raguet and Mohamed-Jalal Fadili and Gabriel Peyr{\'e}},
  journal={SIAM J. Imaging Sci.},
  year={2013},
  volume={6},
  pages={1199-1226}
}
This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form $F + \sum_{i=1}^n G_i$, where $F$ has a Lipschitz-continuous gradient and the $G_i$'s are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than $n = 1$ non-smooth function, our method generalizes it to the case of arbitrary $n$. Our method makes an explicit use of the regularity of $F$ in… 
Iteration-Complexity of a Generalized Forward Backward Splitting Algorithm
TLDR
This paper derives iteration-complexity bounds (pointwise and ergodic) for the inexact version of GFB to obtain an approximate solution based on an easily verifiable termination criterion and proves complexity bounds for relaxed and inexact fixed point iterations built from composition of nonexpansive averaged operators.
Preconditioning of a Generalized Forward-Backward Splitting and Application to Optimization on Graphs
TLDR
The preconditioning of a generalized forward-backward splitting algorithm for finding a zero of a sum of maximally monotone operators with cocoercive consequences can handle large-scale, nonsmooth, convex optimization problems structured on graphs.
A note on the forward-Douglas–Rachford splitting for monotone inclusion and convex optimization
  • Hugo Raguet
  • Mathematics, Computer Science
    Optim. Lett.
  • 2019
TLDR
It is shown that the extension to an arbitrary number of maximally monotone operators in the splitting is a straightforward extension of a fixed-point algorithm proposed by us as a generalization of the forward–backward splitting algorithm.
On Quasi-Newton Forward-Backward Splitting: Proximal Calculus and Convergence
TLDR
A framework for quasi-Newton forward--backward splitting algorithms (proximal quasi- newton methods) with a metric induced by diagonal $\pm$ rank-$r$ symmetric positive definite matrices is introduced, which allows for a highly efficient evaluation of the proximal mapping.
Local and Global Convergence of an Inertial Version of Forward-Backward Splitting
A problem of great interest in optimization is to minimize a sum of two closed, proper, and convex functions where one is smooth and the other has a computationally inexpensive proximal operator. In
A First-Order Splitting Method for Solving a Large-Scale Composite Convex Optimization Problem
The forward-backward operator splitting algorithm is one of the most important methods for solving the optimization problem of the sum of two convex functions, where one is differentiable with a
Fast convergence of generalized forward-backward algorithms for structured monotone inclusions
In this paper, we develop rapidly convergent forward-backward algorithms for computing zeroes of the sum of finitely many maximally monotone operators. A modification of the classical
Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions
TLDR
This paper analyzes a family of generalized inertial proximal splitting algorithms (GIPSA) for solving convex composite minimization problems in a Hilbert space and proves local linear convergence under either restricted strong convexity or a strict complementarity condition.
Generalized Conditional Gradient with Augmented Lagrangian for Composite Minimization
TLDR
A splitting scheme which hybridizes generalized conditional gradient with a proximal step which is carried out for a wide choice of algorithm parameters satisfying so called "open loop" rules, and shows asymptotic feasibility with respect to the affine constraint, boundedness of the dual multipliers, and convergence of the Lagrangian values to the saddle-point optimal value.
A generalized forward-backward splitting operator: nonexpansiveness, convergence rates and applications
In this paper, we consider a generalized forward-backward splitting (G-FBS) operator for solving the monotone inclusions, and analyze its nonexpansive properties in a context of arbitrary variable
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 111 REFERENCES
Gradient methods for minimizing composite functions
  • Y. Nesterov
  • Mathematics, Computer Science
    Math. Program.
  • 2013
In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two terms: one is smooth and given by a black-box oracle, and another is
Nested Iterative Algorithms for Convex Constrained Image Recovery Problems
TLDR
The weak convergence of the proposed algorithms is proved and it is shown that, under some assumptions, it remains possible to apply these methods to the considered optimization problem by making use of a quadratic extension technique.
Convergence Rates in Forward-Backward Splitting
TLDR
For the first time in a general setting, global and local contraction rates are derived and are derived in a form which makes it possible to determine the optimal step size relative to certain constants associated with the given problem.
Iteration-complexity of block-decomposition algorithms and the alternating minimization augmented Lagrangian method
In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a separable two-block structure and
Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers
TLDR
A framework of block-decomposition prox-type algorithms for solving the monotone inclusion problem and shows that any method in this framework is also a special instance of the hybrid proximal extragradient (HPE) method introduced by Solodov and Svaiter is shown.
General Projective Splitting Methods for Sums of Maximal Monotone Operators
TLDR
A general projective framework for finding a zero of the sum of $n$ maximal monotone operators over a real Hilbert space is described, which gives rise to a family of splitting methods of unprecedented flexibility.
A Modified Forward-Backward Splitting Method for Maximal Monotone Mappings
  • P. Tseng
  • Mathematics, Computer Science
    SIAM J. Control. Optim.
  • 2000
TLDR
A modification to the forward-backward splitting method for finding a zero of the sum of two maximal monotone mappings is proposed, under which the method converges assuming only the forward mapping is (Lipschitz) continuous on some closed convex subset of its domain.
Signal Recovery by Proximal Forward-Backward Splitting
We show that various inverse problems in signal recovery can be formulated as the generic problem of minimizing the sum of two convex functions with certain regularity properties. This formulation
Gradient methods for minimizing composite objective function
In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two convex terms: one is smooth and given by a black-box oracle, and
A proximal-based decomposition method for convex minimization problems
TLDR
This paper presents a decomposition method for solving convex minimization problems that preserves the good features of the proximal method of multipliers, with the additional advantage that it leads to a decoupling of the constraints, and is thus suitable for parallel implementation.
...
1
2
3
4
5
...