A Gcd-Sum Function Over Regular Integers Modulo n László Tóth Institute of Mathematics and Informatics University of Pécs Ifjúság u . 6 7624 Pécs Hungary ltoth

@inproceedings{Tth2009AGF,
  title={A Gcd-Sum Function Over Regular Integers Modulo n L{\'a}szl{\'o} T{\'o}th Institute of Mathematics and Informatics University of P{\'e}cs Ifj{\'u}s{\'a}g u . 6 7624 P{\'e}cs Hungary ltoth},
  author={L{\'a}szl{\'o} T{\'o}th},
  year={2009}
}
We introduce a gcd-sum function involving regular integers (mod n) and prove results giving its minimal order, maximal order and average order. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 16 references

A note on the average order of the gcd-sum function

  • O. Bordellès
  • J. Integer Sequences 10
  • 2007
2 Excerpts

The average order of the Dirichlet series of the gcd-sum function

  • K. Broughan
  • J. Integer Sequences 10
  • 2007
1 Excerpt

Mathematical Constants

  • S. R. Finch
  • Cambridge University Press
  • 2003

A generalization of Pillai’s arithmetical function involving regular convolutions

  • L. Tóth
  • Acta Math. Inform. Univ. Ostraviensis 6 (1998…
  • 1998
1 Excerpt

Introduction to Arithmetical Functions

  • P. J. McCarthy
  • Springer
  • 1986
1 Excerpt

Asymptotic results for a class of arithmetical functions

  • J. Chidambaraswamy, R. Sitaramachandrarao
  • Monatsh. Math. 99
  • 1985
1 Excerpt

Similar Papers

Loading similar papers…