A Framework for Clustering Evolving Data Streams

Abstract

The clustering problem is a difficult problem for the data stream domain. This is because the large volumes of data arriving in a stream renders most traditional algorithms too inefficient. In recent years, a few one-pass clustering algorithms have been developed for the data stream problem. Although such methods address the scalability issues of the clustering problem, they are generally blind to the evolution of the data and do not address the following issues: (1) The quality of the clusters is poor when the data evolves considerably over time. (2) A data stream clustering algorithm requires much greater functionality in discovering and exploring clusters over different portions of the stream. The widely used practice of viewing data stream clustering algorithms as a class of one-pass clustering algorithms is not very useful from an application point of view. For example, a simple one-pass clustering algorithm over an entire data stream of a few years is dominated by the outdated history of the stream. The exploration of the stream over different time windows can provide the users with a much deeper understanding of the evolving behavior of the clusters. At the same time, it is not possible to simultaneously perform dynamic clustering over all possible time horizons for a data stream of even moderately large volume. This paper discusses a fundamentally different philosophy for data stream clustering which is guided by application-centered requirements. The idea is divide the clustering process into an online component which periodically stores detailed summary statistics Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment. and an offline component which uses only this summary statistics. The offline component is utilized by the analyst who can use a wide variety of inputs (such as time horizon or number of clusters) in order to provide a quick understanding of the broad clusters in the data stream. The problems of efficient choice, storage , and use of this statistical data for a fast data stream turns out to be quite tricky. For this purpose, we use the concepts of …

Extracted Key Phrases

11 Figures and Tables

Showing 1-10 of 568 extracted citations
050100'04'06'08'10'12'14'16
Citations per Year

983 Citations

Semantic Scholar estimates that this publication has received between 852 and 1,136 citations based on the available data.

See our FAQ for additional information.