# A Decision Method For Elementary Algebra And Geometry

```@inproceedings{Tarski1951ADM,
title={A Decision Method For Elementary Algebra And Geometry},
author={Alfred Tarski},
year={1951}
}```
By a decision method for a class K of sentence (or other expressions) is meant a method by means of which, given any sentence θ, one can always decide in a finite number of steps whether θ is in K; by a decision problem for a class K we mean the problem of finding a decision method for K. A decision method must be like a recipe, which tells one what to do at each steps so that no intelligence is required to follow it; and the method can be applied by anyone so long as he is able to read and…
1,696 Citations
Problem-solving machines for euclidean geometry
• Computer Science
Inf. Sci.
• 1970
This work constructs a mathematical code system, MCS, as a machine solvable language, and gives expandability of the thesaurus by giving a formal procedure of translation from an input language to MCS to retrieve a solution using it as an index.
The solubility of certain decision problems in arithmetic and algebra
• Mathematics
• 1979
Results. We have constructed some rather general algorithms, which can (in theory) be applied in diverse situations. Let us describe them. A. ARITHMETIC GROUPS. Let G be an algebraic subgroup of GLn,
Decision problem for a class of univariate Pfaffian functions
• Mathematics
• 2019
We address the decision problem for sentences involving univariate functions constructed from a fixed Pfaffian function of order \$1\$. We present a new symbolic procedure solving this problem with a
Algorithms and Decision Problems: A Crash Course in Recursion Theory
At first sight it might seem strange to devote in a handbook of philosophical logic a chapter to algorithms. For, algorithms are traditionally the concern of mathematicians and computer scientists.
Decision problems in algebra and analogues of Hilbert's Tenth Problem.
• Mathematics
• 2008
Introduction One of the first tasks undertaken by Model Theory was to produce elimination results, for example methods of eliminating quantifiers in formulas of certain structures. In almost all
Machine learning and computer algebra
The results show that machine learning can effectively be applied to these applications, with the machine learned choices being superior to both choosing a single fixed individual algorithm, as well as to random choice.
Randomizing a ModelH
A randomization of a rst order structure M is a new structure with certain closure properties whose universe is a set K of \random elements" of M. Randomizations assign probabilities to sentences of
The differential of probabilistic entailment
• D. Mundici
• Computer Science, Mathematics
Ann. Pure Appl. Log.
• 2021
These results build on de Finetti's consistency notion and his solution of Boole's problem, and extend Hailperin's polyhedral methods for combining bounds on probabilities.
A HOL Decision Procedure for Elementary Real Algebra
This paper describes a HOL implementation of a quantifier-elimination procedure and gives some preliminary results, which show that the algorithm to eliminate quantifiers is decidable.
One Hundred and Two Problems in Mathematical Logic
• H. Friedman
• Mathematics, Computer Science
J. Symb. Log.
• 1975
This expository paper contains a list of 102 problems which, at the time of publication, are unsolved. These problems are distributed in four subdivisions of logic: model theory, proof theory and