A Convergence Theorem in the Geometry of Alexandrov Spaces

@inproceedings{Yamaguchi2002ACT,
  title={A Convergence Theorem in the Geometry of Alexandrov Spaces},
  author={Takao Yamaguchi},
  year={2002}
}
The fibration theorems in Riemannian geometry play an important role in the theory of convergence of Riemannian manifolds. In the present paper, we extend them to the Lipschitz submersion theorem for Alexandrov spaces, and discuss some applications. Résumé. Les théorèmes de fibration de la géométrie riemannienne jouent un rôle important dans la théorie de la convergence des variétés riemanniennes. Dans cet article, on les étend au cadre lipschitzien des espaces d’Alexandrov, et on donne… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 18 references

Alexandrov’s space with curvature bounded from below I, revised version (Russian)

  • Yu. D. Burago, M. Gromov, A.D.G. Perelman
  • Uspechi Mat. Nauk
  • 1992

Collapsing to almost Riemannian spaces

  • F. H. Wilhelm
  • Indiana Univ. Math. J
  • 1992

Lecture at Münster

  • G. Perelman
  • June
  • 1992
1 Excerpt

The fundamental groups of almost nonnegatively curved manifolds

  • K. Fukaya, T. Yamaguchi
  • Ann. of Math
  • 1992

Alexandrov’s space with curvature bounded from below I

  • BGP Yu.D. Burago, M. Gromov, A.D.G. Perelman
  • 1991

Collapsing and pinching under a lower curvature bound

  • T. Yamaguchi
  • Ann. of Math
  • 1991

Geometric finiteness via controlled topology

  • K. Grove, P. Petersen, J. Y. Wu
  • Inventiones Math
  • 1990

A new version of differentiable sphere theorem

  • Y. Otsu, K. Shiohama, T. Yamaguchi
  • Inventiones Math
  • 1989

A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters

  • K. Fukaya
  • J. Differential Geom
  • 1988

Similar Papers

Loading similar papers…