A Computationally Efficient Limited Memory CMA-ES for Large Scale Optimization

@inproceedings{Loshchilov2014ACE,
  title={A Computationally Efficient Limited Memory CMA-ES for Large Scale Optimization},
  author={Ilya Loshchilov},
  booktitle={GECCO},
  year={2014}
}
We propose a computationally efficient limited memory Covariance Matrix Adaptation Evolution Strategy for large scale optimization, which we call the LM-CMA-ES. The LM-CMA-ES is a stochastic, derivative-free algorithm for numerical optimization of non-linear, non-convex optimization problems in continuous domain. Inspired by the limited memory BFGS method of Liu and Nocedal (1989), the LM-CMA-ES samples candidate solutions according to a covariance matrix reproduced from m direction vectors… CONTINUE READING
14 Citations
11 References
Similar Papers

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 11 references

Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biologischen evolution

  • I. Rechenberg
  • Frommann-Holzboog,
  • 1973
Highly Influential
9 Excerpts

A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005

  • S. Garćıa, D. Molina, M. Lozano, F. Herrera
  • Special Session on Real Parameter Optimization…
  • 2009
Highly Influential
14 Excerpts

Similar Papers

Loading similar papers…