A Comparative Study of Training Algorithms for Supervised Machine Learning

Abstract

Classification in data mining has gained a lot of importance in literature and it has a great deal of application areas from medicine to astronomy, from banking to text classification.. It can be described as supervised learning algorithm as it assigns class labels to data objects based on the relationship between the data items with a pre-defined class label. The classification techniques are help to learn a model from a set of training data and to classify a test data well into one of the classes. This research is related to the study of the existing classification algorithm and their comparative in terms of speed, accuracy, scalability and other issues which in turn would help other researchers in studying the existing algorithms as well as developing innovative algorithms for applications or requirements which are not available.

2 Figures and Tables

051015201520162017
Citations per Year

Citation Velocity: 6

Averaging 6 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@inproceedings{Bhavsar2012ACS, title={A Comparative Study of Training Algorithms for Supervised Machine Learning}, author={Hetal Bhavsar and Amit Ganatra}, year={2012} }