A Class of Sobolev Type Inequalities

@inproceedings{Tian2008ACO,
  title={A Class of Sobolev Type Inequalities},
  author={G Q Tian and Xu-Jia Wang},
  year={2008}
}
In this paper, we prove that for any strictly convex polynomial, or more generally any strictly convex function satisfying appropriate conditions, there is an associated Sobolev type inequality. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 27 references

Sobolev inequalities for weighted gradients, Comm

  • R. Monti
  • Partial diff. eqns,
  • 2006

Sobolev and mean - value inequalities on generalized submanifolds of R n

  • L. M. Simon
  • J . Diff . Geom .
  • 2002

Nonlinear analysis on manifolds: Sobolev spaces and inequalities

  • E. Hebey
  • Courant Lecture Notes in Mathematics
  • 1999

Properties of the solutions of the linearized Monge - Ampere equation

  • C. E. Gutierrez
  • Amer . J . Math .
  • 1997

Properties of the solutions of the linearized Monge-Ampere equation, Amer

  • L. A. Caffarelli, C. E. Gutierrez
  • J. Math
  • 1997

Isoperimetric and Sobolev inequalities for Carnot - Carathéodory spaces and the existence of minimal surfaces

  • N. S. Trudinger
  • Comm . Pure Appl . Math .
  • 1996

Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm

  • D.M.N. Garofalo
  • Pure Appl. Math
  • 1996

Similar Papers

Loading similar papers…