Corpus ID: 119588404

A Class of Kazhdan-Lusztig R-Polynomials and q-Fibonacci Numbers

@article{Chen2013ACO,
  title={A Class of Kazhdan-Lusztig R-Polynomials and q-Fibonacci Numbers},
  author={W. Chen and Neil J. Y. Fan and P. L. Guo and Michael X. X. Zhong},
  journal={arXiv: Combinatorics},
  year={2013}
}
  • W. Chen, Neil J. Y. Fan, +1 author Michael X. X. Zhong
  • Published 2013
  • Mathematics
  • arXiv: Combinatorics
  • Let $S_n$ denote the symmetric group on $\{1,2,\ldots,n\}$. For two permutations $u, v\in S_n$ such that $u\leq v$ in the Bruhat order, let $R_{u,v}(q)$ and $\R_{u,v}(q)$ denote the Kazhdan-Lusztig $R$-polynomial and $\R$-polynomial, respectively. Let $v_n=34\cdots n\, 12$, and let $\sigma$ be a permutation such that $\sigma\leq v_n$. We obtain a formula for the $\R$-polynomials $\R_{\sigma,v_n}(q)$ in terms of the $q$-Fibonacci numbers depending on a parameter determined by the reduced… CONTINUE READING

    References

    SHOWING 1-6 OF 6 REFERENCES
    Explicit Formulae for Some Kazhdan-Lusztig R-Polynomials
    • M. Pagliacci
    • Computer Science, Mathematics
    • J. Comb. Theory, Ser. A
    • 2001
    • 6
    Combinatorics of Coxeter Groups
    • 1,225
    • Highly Influential
    Hecke algebras and shellings of Bruhat intervals
    • 142
    • Highly Influential
    • PDF
    Combinatorial Properties of the KazhdanLusztig R-Polynomials for S n
    • 26
    • Highly Influential