# A Categorical Generalization of Klumpenhouwer Networks

@inproceedings{Popoff2015ACG, title={A Categorical Generalization of Klumpenhouwer Networks}, author={Alexandre Popoff and Moreno Andreatta and Andr{\'e}e C. Ehresmann}, booktitle={MCM}, year={2015} }

This article proposes a functorial framework for generalizing some constructions of transformational theory. We focus on Klumpenhouwer Networks for which we propose a categorical generalization via the concept of set-valued poly-K-nets (henceforth PK-nets). After explaining why K-nets are special cases of these category-based transformational networks, we provide several examples of the musical relevance of PK-nets as well as morphisms between them. We also show how to construct new PK-nets by…

## 15 Citations

Relational poly-Klumpenhouwer networks for transformational and voice-leading analysis

- Computer Science
- 2018

The present article proposes a new framework called relational PK-nets, an extension of the previous work on poly-Klumpenhouwer networks (PK-nets), in which diagrams in sets are considered rather than functors in sets.

Relational PK-Nets for Transformational Music Analysis

- Computer Science
- 2016

This work proposes a new framework called relational PK-Nets, an extension of their previous work on Poly-Klumpenhouwer networks, in which they consider diagrams in $\mathbf{Rel}$ rather than $\Mathbf{Sets}$.

Groupoids and Wreath Products of Musical Transformations: A Categorical Approach from poly-Klumpenhouwer Networks

- Computer ScienceMCM
- 2019

This work proposes a new groupoid-based approach to transformational music theory, in which transformations of PK-nets are considered rather than ordinary sets of musical objects.

Tropical Generalized Interval Systems

- MathematicsMCM
- 2019

The impossibility to build tropical GIS in the finite case is finally proven and discussed and a new framework allows to broaden the GIS model introducing a new operation and consequently new musical and conceptual insights and applications.

On the use of relational presheaves in transformational music theory

- MathematicsJournal of Mathematics and Music
- 2020

Traditional transformational music theory describes transformations between musical elements as functions between sets and studies their subsequent algebraic properties and their use for music…

Dynamical and Topological Tools for (Modern) Music Analysis. (Outils dynamiques et topologiques pour l'analyse musicale)

- Computer Science
- 2015

A model at the crossroad between the signal and symbolic analysis of music uses multiple sequences alignment to provide an encompassing, novel viewpoint on the musical inspiration transfer among compositions belonging to different artists, genres and time.

Meter networks: a categorical framework for metrical analysis

- MathematicsJournal of Mathematics and Music
- 2020

A framework based on category theory which unifies the simultaneous consideration of timepoints, metrical relations, and meter inclusion founded on the category Rel of sets and binary relations is developed.

Musical Performance : a Composition of Monads ( in Workshop : Logic and Music )

- Art
- 2018

Much work has been done on computer representations of music at the physical level. Developments such as K-nets by Klumpenhouwer and Lewin provide a way for representing transformations from one…

Knots, Music and DNA.

- Art
- 2018

Musical gestures connect the symbolic layer of the score to the physical layer of sound. I focus here on the mathematical theory of musical gestures, and I propose its generalization to include…

Quantum GestART: identifying and applying correlations between mathematics, art, and perceptual organization

- ArtJournal of Mathematics and Music
- 2020

A method based on diagrammatic thinking and quantum formalism is proposed, exploiting decompositions of complex forms into a set of simple shapes, discretization of complex images, and Dirac notation, imagining a world of “prototypes” that can be connected to obtain a fine or coarse-graining approximation of a given visual image.

## References

SHOWING 1-10 OF 21 REFERENCES

From a Categorical Point of View: K-nets as Limit Denotators

- Computer Science
- 2005

The interpretation of Klumpenhouwer Networks is presented as a special limit construction in the framework of the topos-theoretic denotator architecture developed in [19], offering a vast generalization of the network concept and the formally closed recursive construction of iterated networks.

Commuting Groups and the Topos of Triads

- MathematicsMCM
- 2011

The goal of this article is to clarify the relationship between the topos of triads and the neo-Riemannian PLR-group by developing some theory of generalized interval systems and enumerating all Z12-subsets which are invariant under the triadic monoid.

Morphisms of generalized interval systems and PR-groups

- Mathematics
- 2012

We begin the development of a categorical perspective on the theory of generalized interval systems (GISs). Morphisms of GISs allow the analyst to move between multiple interval systems and connect…

Thoughts on Klumpenhouwer Networks and Mathematical Models: The Synergy of Sets and Graphs

- Mathematics
- 2007

This essay responds to one of the four central issues in Buchler's thoughtful article: K-nets and their association with dual transformation.

Towards A Categorical Approach of Transformational Music Theory

- Mathematics
- 2012

Transformational music theory mainly deals with group and group actions on sets, which are usually constituted by chords. For example, neo-Riemannian theory uses the dihedral group D24 to study…

Klumpenhouwer Networks and Some Isographies that Involve Them

- Mathematics
- 1990

Networks involving T and I operations are useful for interpreting pcsets, and for other purposes. Certain groups of isographies among such networks, being isomorphic to the T/I group itself, are…

Adjoint Functors

- Mathematics
- 2010

1. Introduction. In homology theory an important role is played by pairs of functors consisting of (i) a functor Horn in two variables, contravariant in the first variable and co-variant in the…

Generalized Musical Intervals and Transformations

- Mathematics
- 1987

This paper focuses on the development of knowledge structures in the context of discrete-time dynamical systems and their role in the history oftonal theory.

Towards a Categorical Theory of Creativity for Music, Discourse, and Cognition

- ArtMCM
- 2013

The model, which is applied to musical creativity, discourse theory, and cognition, suggests the relevance of the notion of “colimit” as a unifying construction in the three domains as well as the central role played by the Yoneda Lemma in the categorical formalization of creative processes.

THE OM COMPOSER’S BOOK

- History
- 2015

Copyright & reuse City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this…