A CLASS OF NONPOSITIVELY CURVED KÄHLER MANIFOLDS BIHOLOMORPHIC TO THE UNIT BALL IN C n

  • Published 2005
Let (M, g) be a simply connected complete Kähler manifold with nonpositive sectional curvature. Assume that g has constant negative holo-morphic sectional curvature outside a compact set. We prove that M is then biholomorphic to the unit ball in C n , where dim C M = n. Résumé. Soit (M, g) une variété kählériennecompì ete et simplement connexè a courbure… CONTINUE READING