# A Burgess-like subconvex bound for twisted L-functions

@inproceedings{Blomer2007ABS, title={A Burgess-like subconvex bound for twisted L-functions}, author={Valentin Blomer and Gergely Harcos and Philippe Michel and Zhouhang Mao}, year={2007} }

Abstract Let g be a cuspidal newform (holomorphic or Maass) of arbitrary level and nebentypus, χ a primitive character of conductor q, and s a point on the critical line ℜs = ½. It is proved that , where ε > 0 is arbitrary and θ = is the current known approximation towards the Ramanujan–Petersson conjecture (which would allow θ = 0); moreover, the dependence on s and all the parameters of g is polynomial. This result is an analog of Burgess' classical subconvex bound for Dirichlet L-functions…

## 78 Citations

### Hybrid bounds for twisted L-functions

- Mathematics
- 2008

Abstract The aim of this paper is to derive bounds on the critical line ℜs = 1/2 for L-functions attached to twists f ⊗ χ of a primitive cusp form f of level N and a primitive character modulo q that…

### Rankin-Selberg L-functions on the critical line

- Mathematics
- 2005

Let f and g be two primitive (holomorphic or Maass) cusp forms of arbitrary level, character and infinity parameter by which we mean the weight in the holomorphic case and the spectral parameter in…

### BURGESS-LIKE SUBCONVEX BOUNDS FOR GL2 × GL1

- Mathematics
- 2014

Let F be a number field, π an irreducible cuspidal representation of GL2(AF ) with unitary central character, and χ a Hecke character of analytic conductor Q. Then L(1/2, π⊗χ) Q 2 − 8 (1−2θ)+ , where…

### The Second Moment of Rankin-Selberg L-functions, Hybrid Subconvexity Bounds, and Related Topics

- Mathematics
- 2014

In this thesis, we study three problems related to subconvexity bounds of RankinSelberg L-functions. Let M,N be two coprime square-free integers. Let f be either a holomorphic or a Maaß cusp form of…

### On an analogue of Titchmarsh’s divisor problem for holomorphic cusp forms

- Mathematics
- 2012

the estimation of (1.1) for ξ = 1 is related to the location of the zeros of ζ, which is the classical approach to the prime number theorem, and for multiplicative ξ in general the problem can be…

### Non-split sums of coefficients of GL(2)-automorphic forms

- Mathematics
- 2011

Given a cuspidal automorphic form π on GL2, we study smoothed sums of the form $$\sum\nolimits_n {{a_\pi }({n^2} + d)V({n \over x})} $$. The error term we get is sharp in that it is uniform in both d…

### Weyl-type bounds for twisted $GL(2)$ short character sums

- Mathematics
- 2021

Let f be a Hecke-Maass or holomorphic primitive cusp form for SL(2,Z) with normalized Fourier coefficients λf (n). Let χ be a primitive Dirichlet character of modulus p, where p is a prime number. In…

### A generalized cubic moment and the Petersson formula for newforms

- MathematicsMathematische Annalen
- 2018

Using a cubic moment, we prove a Weyl-type subconvexity bound for the quadratic twists of a holomorphic newform of square-free level, trivial nebentypus, and arbitrary even weight. This generalizes…

## References

SHOWING 1-10 OF 41 REFERENCES

### Bounds for automorphic L–functions. III

- Mathematics
- 2001

We continue our study of GL2 L–functions with the aim of providing upper bounds for their order of magnitude. As is familiar it suffices to provide such bounds on the critical line and, both for the…

### New bounds for automorphic L-functions

- Mathematics
- 2003

This dissertation contributes to the analytic theory of automorphic L-functions.
We prove an approximate functional equation for the central value of the L-series attached to an irreducible…

### Bounds for automorphic L-functions

- Mathematics
- 2005

on the line Re s = 2 x, the implied constant depending on s. This classical estimate resisted improvement for many years until Burgess I-B] reduced the exponent from 88 to ~ , many important…

### Shifted convolution sums and subconvexity bounds for automorphic L-functions

- Mathematics
- 2004

The behavior of L-functions in the critical strip has received a lot of attention from the first proof of the prime number theorem up to now. In fact, the deeper arithmetic information of the…

### The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points. II

- Mathematics
- 2005

We prove a general subconvex bound in the level aspect for Rankin–Selberg L-functions associated with two primitive holomorphic or Maass cusp forms over Q. We use this bound to establish the…

### Fourier coefficients of modular forms of half-integral weight

- Mathematics
- 1985

It is known that if the Fourier coefficients a(n)(n ≥ 1) of an elliptic modular form of even integral weight k ≥ 2 on the Hecke congruence subgroup Γ0(N)(N ∈ N) satisfy the bound a(n) ≪f nc for all n…

### An additive problem in the Fourier coefficients of cusp forms

- Mathematics
- 2001

Abstract. We establish an estimate on sums of shifted products of Fourier coefficients coming from holomorphic or Maass cusp forms of arbitrary level and nebentypus. These sums are analogous to the…

### Hybrid bounds for Dirichlet's L-function

- MathematicsMathematical Proceedings of the Cambridge Philosophical Society
- 2000

This is a paper about upper bounds for Dirichlet's L-function, L(s, χ), on its critical line (s + s¯ = 1). It is to be assumed throughout that, unless otherwise stated, the Dirichlet character, χ, is…

### FUNCTORIALITY FOR THE EXTERIOR SQUARE OF GL4 AND THE SYMMETRIC FOURTH OF GL2

- Mathematics
- 2003

Let ∧ : GLn(C) −→ GLN (C), where N = n(n−1) 2 , be the map given by the exterior square. Then Langlands’ functoriality predicts that there is a map from cuspidal representations of GLn to automorphic…

### Cuspidality of symmetric powers with applications

- Mathematics
- 2002

The purpose of this paper is to prove that the symmetric fourth power of a cusp form on GL(2), whose existence was proved earlier by the first author, is cuspidal unless the corresponding automorphic…