A Bound for the Degree of Nonholonomy in the Plane

@article{Risler1996ABF,
  title={A Bound for the Degree of Nonholonomy in the Plane},
  author={Jean-Jacques Risler},
  journal={Theor. Comput. Sci.},
  year={1996},
  volume={157},
  pages={129-136}
}
Let X = (VI,. , VT) be a system made with vector fields VI,. _. . V, in R” whose coordinates are polynomials of degree < d. To such a system is associated the control system X: = c U, V, It is proven that in the case n = 2, the degree of nonholonomy of such a system is bounded by a function $(2,d)<6d2 2d + 2. 

From This Paper

Topics from this paper.
6 Citations
7 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-7 of 7 references

Ordre de contact de courbes integrales du plan

  • A. Gabrielov, J-M. Lion, R. Moussu
  • CRAS Paris 319
  • 1994
1 Excerpt

Singularities and topological aspects in nonholonomic motion planning

  • J-P. Laumond
  • in: 2. Li and J. Canny, eds., Nonholonomic Motion…
  • 1993
1 Excerpt

The maximum of the degree of nonholonomy for the car with n trailers

  • F. Luca, J-J. Risler
  • preprint LMENS-93-14, Ecole Normale Superieure…
  • 1993
1 Excerpt

Some complexity questions regarding controllability

  • E. Sontag
  • in: Proc. 27th IEEE Co@ on Decision and Control…
  • 1982

On the length of Hilbert ascending chain

  • A. Seidenberg
  • Proc. Amer. Math. Sot. 29
  • 1971

Uber Systeme von linearen partiellen Differentialgleichungen erster Ordnung

  • W. L. Chow
  • Math. Ann
  • 1940

Similar Papers

Loading similar papers…