• Corpus ID: 235727387

A $p$-adic lower bound for a linear form in logarithms

@inproceedings{Palojarvi2021AL,
  title={A \$p\$-adic lower bound for a linear form in logarithms},
  author={Neea Palojarvi and Louna Seppala},
  year={2021}
}
Linear forms in logarithms have an important role in the theory of Diophantine equations. In this article, we prove explicit p-adic lower bounds for linear forms in p-adic logarithms of rational numbers using Padé approximations of the second kind. 

References

SHOWING 1-10 OF 22 REFERENCES
Linear Forms in two m-adic Logarithms and Applications to Diophantine Problems
We give sharp, explicit estimates for linear forms in two logarithms, simultaneously for several non-Archimedean valuations. We present applications to explicit lower bounds for the fractional part
Linear forms in the logarithms of algebraic numbers
This chapter is of an auxiliary nature, being mainly concerned with the relationship between bounds for linear forms in the logarithms of algebraic numbers in different (archimedean and
On irrationality measures of the values of Gauss hypergeometric function
The paper gives irrationality measures for the values of some Gauss hypergeometric functions both in the archimedean andp-adic case. Further, an improvement of general results is obtained in the case
Linear forms in $p$-adic logarithms. III
© Foundation Compositio Mathematica, 1994, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions
Sharp bounds for the Lambert W function
ABSTRACT In this paper, sharp lower and upper bounds for the branch of Lambert W function are provided by means of functional analysis methods and monotonicity properties.
Approximants de Padé simultanés de logarithmes
Resume Les approximants de Pade simultanes de logarithmes fournissent des approximations rationnelles simultanees de logarithmes de certains nombres rationnels proches de 1. Ils permettent d'obtenir
Minorations de combinaisons linéaires de logarithmes p-adiques de nombres algébriques
Nous donnons une nouvelle minoration pour des combinaisons lineaires, a coefficients entiers, de logarithmes p-adiques de nombres algebriques. Cette estimation ameliore des resultats anterieurs de Yu
Type II Hermite–Padé Approximations of Generalized Hypergeometric Series
AbstractWe shall present short proofs for type II (simultaneous) Hermite–Padé approximations of the generalized hypergeometric and q-hypergeometric series
...
1
2
3
...