6 Relaxed Linear Separability ( RLS ) Approach to Feature ( Gene ) Subset Selection

@inproceedings{Bobrowski20126RL,
  title={6 Relaxed Linear Separability ( RLS ) Approach to Feature ( Gene ) Subset Selection},
  author={Leon Bobrowski and Tomasz and ukaszuk},
  year={2012}
}
Feature selection is one of active research area in pattern recognition or data mining methods (Duda et al., 2001). The importance of feature selection methods becomes apparent in the context of rapidly growing amount of data collected in contemporary databases (Liu & Motoda, 2008). Feature subset selection procedures are aimed at neglecting as large as possible number of such features (measurements) which are irrelevant or redundant for a given problem. The feature subset resulting from… CONTINUE READING
5 Citations
8 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-8 of 8 references

Feature selection based on relaxed linear separability

  • H. Bacelar-Nicolau, L. Bobrowski, J. Doroszewski, C. Kulikowski, N. Victor, T. ukaszuk
  • 2009

Eksploracja danych oparta na wypuk ł ych i odcinkowo - liniowych funkcjach kryterialnych ( Data mining based on convex and piecewise linear ( CPL ) criterion functions ) ( in Polish )

  • L. Rutkowski, L. Bobrowski
  • 2005

Gene expression profiling predicts clinical outcome of breast cancer

  • L. J. van’t Veer
  • Nature
  • 2002

Gene expression profiling predicts clinical outcome of breast

  • HallCRC, V. N. New York Vapnik
  • 1998

Similar Papers

Loading similar papers…