6-Hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase, enzymes of the benzoyl-CoA pathway of anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica.

Abstract

Benzoyl-CoA is a common intermediate in the anaerobic bacterial metabolism of many aromatic substrates. Two enzymes and ferredoxin of the central benzoyl-CoA pathway in Thauera aromatica have been purified so far. Benzoyl-CoA reductase reduces the aromatic ring with reduced ferredoxin yielding cyclohexa-1,5-diene-1-carbonyl-CoA [Boll, M. & Fuchs, G. (1995) Eur. J. Biochem. 234, 921-933]. Dienoyl-CoA hydratase subsequently adds one molecule of water and thereby produces 6-hydroxycyclohex-1-ene-1-carbonyl-CoA [Laempe, D., Eisenreich, W., Bacher, A., & Fuchs, G. (1998) Eur. J. Biochem. 255, 618-627]. Here two new enzymes, which convert this intermediate to the noncyclic product 3-hydroxypimelyl-CoA, were purified from T. aromatica and studied. 6-Hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase is an NAD(+)-specific beta-hydroxyacyl-CoA dehydrogenase that catalyzes 6-hydroxycyclohex-1-ene-1-carbonyl-CoA + NAD(+) --> 6-oxocyclohex-1-ene-1-carbonyl-CoA + NADH + H(+). 6-Oxocyclohex-1-ene-1-carbonyl-CoA hydrolase acts on the beta-oxoacyl-CoA compound and catalyzes the addition of one molecule of water to the double bound and the hydrolytic C-C cleavage of the alicyclic ring, 6-oxocyclohex-1-ene-1-carbonyl-CoA + 2 H(2)O --> 3-hydroxypimelyl-CoA. The genes for both enzymes, had and oah, were cloned, had was overexpressed in Escherichia coli and the recombinant protein was purified. Hence, presumably all enzymes of the central benzoyl-CoA pathway of anaerobic aromatic metabolism from this organism have now been purified and studied and the corresponding genes have been cloned and sequenced.

Cite this paper

@article{Laempe19996Hydroxycyclohex1ene1carbonylCoADA, title={6-Hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase, enzymes of the benzoyl-CoA pathway of anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica.}, author={Diana Laempe and Martina Jahn and George Fuchs}, journal={European journal of biochemistry}, year={1999}, volume={263 2}, pages={420-9} }