We present algorithms for the two layer straightline crossing minimization problem that are able to compute exact optima. Our computational results lead us to the conclusion that there is no need for heuristics if one layer is fixed, even though the problem is NP-hard, and that for the general problem with two variable layers, true optima can be computed for sparse instances in which the smaller layer contains up to 15 nodes. For bigger instances, the iterated barycenter method turns out to be… CONTINUE READING