2 5 A ug 1 99 8 IDENTITIES FOR SCHUR FUNCTIONS AND PLANE PARTITIONS

@inproceedings{Bressoud199825A,
  title={2 5 A ug 1 99 8 IDENTITIES FOR SCHUR FUNCTIONS AND PLANE PARTITIONS},
  author={David M. Bressoud},
  year={1998}
}
By a plane partition, we mean a finite set, P , of lattice points with positive integer coefficients, {(i, j, k)} ⊆ N, with the property that if (r, s, t) ∈ P and 1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ k ≤ t, then (i, j, k) must also be in P . A plane partition is symmetric if (i, j, k) ∈ P if and only if (j, i, k) ∈ P . The height of stack (i, j) is the largest value of k for which there exists a point (i, j, k) in the plane partition. A plane partition is column strict if the height of stack (i, j) is… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-8 of 8 references

tités nouvelles, Strasbourg, Publ. I.R.M.A., Actes du 15e Séminarie

  • Jacques Désarménien
  • Lotharingien de Combi- natoire 340/S-15
  • 1987
1 Excerpt

Enumeration of certain Young tableaux with bounded heights, Combinatoire énumérative (G

  • Myriam DeSainte-Catherine, Gérard X. Viennot
  • Labelle and P. Leroux, eds.), Lecture Notes in…
  • 1986
2 Excerpts

Plane partitions (I): the MacMahon conjecture, Studies in Foundations and Combinatorics

  • George Andrews
  • Advances in Mathematics Supplementary Studies
  • 1978
3 Excerpts

Bressoud , Elementary proof of MacMahon ’ s conjecture

  • M. David
  • J . Combinatorial Th .
  • 1972

Partitions of numbers whose graphs possess symmetry

  • P. A. MacMahon
  • Trans . Cambridge Phil . Soc .

Similar Papers

Loading similar papers…