0 40 70 48 v 2 1 1 N ov 2 00 4 Reduction Groups and Automorphic Lie Algebras

@inproceedings{Lombardo2008047,
  title={0 40 70 48 v 2 1 1 N ov 2 00 4 Reduction Groups and Automorphic Lie Algebras},
  author={Sara Lombardo and Alexander V. Mikhailov},
  year={2008}
}
We study a new class of infinite dimensional Lie algebras, which has important applications to the theory of integrable equations. The construction of these algebras is very similar to the one for automorphic functions and this motivates the name automorphic Lie algebras. For automorphic Lie algebras we present bases in which they are quasigraded and all structure constants can be written out explicitly. These algebras have a useful factorisations on two subalgebras similar to the factorisation… CONTINUE READING

From This Paper

Topics from this paper.
5 Citations
21 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 21 references

Reductions of integrable equations. Dihedral group reductions

  • S. Lombardo, A V.Mikhailov
  • J. Phys. A: Math. Gen.,
  • 2004
3 Excerpts

Cohomology of finite groups, AMS

  • A. Adem, J. R. Milgram
  • 2003
1 Excerpt

: N - wave interactions related to simple Lie algebras

  • S. GerdjikovV., G. GrahovskiG., N. KostovA.
  • Z 2 - reductions and soliton solutions , Inverse…
  • 2001
1 Excerpt

Reductions of N – waves interaction related to low rank simple Lie algebras

  • S. GerdjikovV., G. GrahovskiG., N. KostovA.
  • Z 2 – Reductions , J . Phys . A : Math . Gen .
  • 2001

Reductions of N–waves interaction related to low rank simple Lie algebras. Z2–Reductions

  • V S.Gerdjikov, G G.Grahovski, A N.Kostov
  • J. Phys. A: Math. Gen.,
  • 2001
1 Excerpt

Infinite dimensional Lie algebras, 3rd ed

  • V G.Kac
  • 1990
1 Excerpt

: Extension of the module of invertible transformations . Classification of integrable systems

  • V. MikhailovA., B. ShabatA., I. YamilovR.
  • Comm . Math . Phys .
  • 1988

Extension of the module of invertible transformations

  • A V.Mikhailov, A B.Shabat, R I.Yamilov
  • Classification of integrable systems, Comm. Math…
  • 1988
2 Excerpts

Similar Papers

Loading similar papers…