• Corpus ID: 109456510

Разработка и апробация эмулятора нейросетевого моделирования для целей прогнозирования временных рядов

@inproceedings{2012,
  title={Разработка и апробация эмулятора нейросетевого моделирования для целей прогнозирования временных рядов},
  author={Д. В. Дмитриев and Д. А. Ляхманов and Э. С. Соколова},
  year={2012}
}
We introduced the solution of the actual problem of automating design architecture of neural networks for forecasting, followed by appraisal at the time series of different nature. We took into account the following characteristics of neural networks in the design phase and training: the number of network layers, each layer of the number of neurons, the type of activation function, learning rate, the terms of graduation. Based on the results obtained from neural network modeling, provide… 

Time series analysis, forecasting and control

This revision of a classic, seminal, and authoritative book explores the building of stochastic models for time series and their use in important areas of application —forecasting, model specification, estimation, and checking, transfer function modeling of dynamic relationships, modeling the effects of intervention events, and process control.

A rainfall forecasting method using machine learning models and its application to the Fukuoka city case

An attempt is made to derive optimal data-driven machine learning methods for forecasting an average daily and monthly rainfall of the Fukuoka city in Japan concentrating on three aspects: modelling inputs, modelling methods and pre-processing techniques.

A Cellular Automaton Approach to Spatial Electric Load Forecasting

A method for spatial electric load forecasting using a reduced set of data using a cellular automata model for the spatiotemporal allocation of new loads in the service zone and results are presented in future preference maps.

Time Series Analyses

Padilha-Feltrin A. A cellular automaton approach to spatial electric load forecasting

  • IEEE Transactions on Power Systems
  • 2010

A . Razrabotka i issledovanie metoda prognozirovanija vremennyh rjadov na osnove konechnyh avtomatov [ Development and research of a time series forecasting method based on finite automata ]

  • Rossijskaja nauchno - tehnicheskaja konferencija UCI Machine Learning Repository

Time Series Forecasting Method Based on Finite State Machine // International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM)

    С . , Рябко Б . Я . Экспериментальное исследование точности методов прогноза , базирующихся на архиваторах / / Вестник Новосибирского государственного универси - тета

      Padilha-Feltrin A. A cellular automaton approach to spatial electric load forecasting // IEEE Transactions on Power Systems

      • 2010