# Мера иррациональности числа $\frac{\pi}{\sqrt{3}}$@@@Irrationality measure of the number $\frac{\pi}{\sqrt{3}}$

@inproceedings{2015,
title={Мера иррациональности числа \$\frac\{\pi\}\{\sqrt\{3\}\}\$@@@Irrationality measure of the number \$\frac\{\pi\}\{\sqrt\{3\}\}\$},
author={Валентина Александровна Андросенко and Valentina Aleksandrovna Androsenko},
year={2015}
}
• Published 2015
• Mathematics
4 Citations
On the Irrationality Measures of Certain Numbers. II
For the irrationalitymeasures of the numbers $$\sqrt {2k - 1}$$2k−1 arctan$$\left( {\sqrt {2k - 1} /\left( {k - 1} \right)} \right)$$(2k−1/(k−1)), where k is an even positive integer, upper boundsExpand
Об оценке меры иррациональности чисел вида $\sqrt{4k+3}\ln{\frac{\sqrt{4k+3}+1}{\sqrt{4k+3}-1}}$ и $\frac{1}{\sqrt{k}}\arctg{\frac{1}{\sqrt{k}}}^1$
• Mathematics
• 2018
The arithmetic properties of the values of hypergeometric function have been studied by various methods since the paper of C. Siegel in 1929. This direction of the theory of DiophantineExpand