Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen.

@article{LejeuneDirichletberDR,
  title={{\"U}ber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen.},
  author={G. Lejeune Dirichlet},
  journal={Journal f{\"u}r die reine und angewandte Mathematik (Crelles Journal)},
  volume={1850},
  pages={209 - 227}
}
.Bekanntlich bat Lagrange zuerst gezeigt, dafs jede binäre quadratische Form reducirt, d. h. in eine andere äquivalente verwandelt werden kann, deren Coefficienten gewisse Ungleichheitsbedingungen erfüllen, und zugleich nachgewiesen, dafs in jeder Classe positiver Formen immer nur eine einzige solche Form existirt, so dafs für diesen Fall die verschiedenen, einer gegebenen Determinante entsprechenden reducirten Formen als die Repräsentanten der verschiedenen Classen dienen können. Nachdem sp… 
Valeurs extrêmes de mosaïques aléatoires
Une mosaique aleatoire est une partition aleatoire de l'espace euclidien en des polytopes appeles cellules. Ce type de structure apparait dans divers domaines tels que la biologie cellulaire, les
On the geometry of symmetry breaking inequalities
TLDR
It is proved that the Schreier-Sims inequalities can contain an exponential number of isomorphic binary vectors for a given permutation group $G, which shows evidence of the lack of symmetry breaking effectiveness of this fundamental domain.
Egg-Forms and Measure-Bodies: Different Mathematical Practices in the Early History of the Modern Theory of Convexity
Argument Two simultaneous episodes in late nineteenth-century mathematical research, one by Karl Hermann Brunn (1862–1939) and another by Hermann Minkowski (1864–1909), have been described as the
The Optimal Lattice Quantizer in Nine Dimensions
TLDR
A full description of this one‐parameter family of lattices and their Voronoi cells is given, and their (scalar and tensor) second moments are calculated analytically as a function of a.
Geometrie der Zahlen. Ein \"Uberblick
This article provides a historical overview of Geometry of Numbers. 1. Figures, 2. The circuit problem and its relatives, 3. Minkowski lattice point set, 4. The young Hermann Minkowski, 5. The
Voronoi diagrams – inventor, method, applications
TLDR
Application of the method of Voronoi diagrams in the most popular computer programs from the Geographic Information System (GIS) group is presented and examples of its usage in research on geographic space in various scientific disciplines are presented.
Set Voronoi Tessellation for Particulate Systems in Two Dimensions
TLDR
This work elucidate the use of Set Voronoi tessellation to extract meaningful local information in a quasi-two-dimensional system of granular rods and illustrates how it can be applied to arbitrarily shaped particles such as an assembly of honey bees or pedestrians for obtaining structural information.
Feature Engineering for Materials Chemistry - Does Size Matter?
TLDR
The biggest improvement in the model was due to inclusion of band gaps calculated using density functional theory, which resulted in a model that could predict the band gaps of the 2254 light-harvesting materials in the data set with an accuracy reflected in a root-mean-square error and mean absolute error.
On two special classes of parallelohedra in E6.
  • P. Engel
  • Mathematics
    Acta crystallographica. Section A, Foundations and advances
  • 2019
TLDR
The Σ-subcones are investigated and, in particular, the Σ0-subcone will be described which first occurs in E6 and which is governed by the group G.
Protein cutoff scanning: A comparative analysis of cutoff dependent and cutoff free methods for prospecting contacts in proteins
TLDR
In the strict range up to 7.0 Å, the CD approach revealed to be a simpler, more complete, and reliable technique than DT or AD, and it is shown that coarse‐grained residue representations may introduce bias in the analysis of neighbors in cutoffs up to 6.8 Å.
...
...