Über die Komposition der quadratischen Formen

@article{HurwitzberDK,
  title={{\"U}ber die Komposition der quadratischen Formen},
  author={A. Hurwitz},
  journal={Mathematische Annalen},
  volume={88},
  pages={1-25}
}
In den Nachrichten der k. Gesellschaft der Wissenschaften zu Gottingen vom Jahre 1898, S. 309–316 [diese Werke, Bd. II, S. 365 – 571] habe ich die folgende Aufgabe behandelt: Es seien φ, ψ, χ gegebene quadratische Formen von je n Variablen. Die Determinanten der drei Formen seien von Null verschieden. Man soll nun die Gleichung $$\varphi \left( {{x_1},{x_2},...,{x_n}} \right) \cdot \Psi \left( {{y_1},{y_2},...,{y_n}} \right) = \chi \left( {{z_1},{z_2},...,{z_n}} \right)$$ (1) auf die… Expand
Pseudo-Euclidean Hurwitz Pairs and Generalized Fueter Equations
In [15] the authors have reformulated, in the language of Clifford algebras, the Hurwitz problem[10] of finding all the pairs of positive integers (n, p) and all the systems $$\mathopExpand
Gastineau-Hills’ Quasi-Clifford Algebras and Plug-In Constructions for Hadamard Matrices
The quasi-Clifford algebras as described by Gastineau-Hills in 1980 and 1982, should be better known, and have only recently been rediscovered. These algebras and their representation theory provideExpand
An Asymptotic Bound on the Composition Number of Integer Sums of Squares Formulas
Abstract Let ${{\sigma }_{\mathbb{Z}}}\left( k \right)$ be the smallest $n$ such that there exists an identity $$\left( x_{1}^{2}\,+\,x_{2}^{2}\,+\,\cdot \cdot \cdot \,+\,x_{k}^{2} \right)\,\cdotExpand
Quadratic harmonic morphisms and O-systems
We introduce O-systems (Definition \ref{DO}) of orthogonal transformations of ${\Bbb R}^{m}$, and establish $1-1$ correspondences both between equivalence classes of Clifford systems and that ofExpand
Sextonions, Zorn matrices, and $$\mathbf {e}_{\mathbf{7} \frac{\mathbf{1}}{\mathbf{2}}}$$e712
By exploiting suitably constrained Zorn matrices, we present a new construction of the algebra of sextonions (over the algebraically closed field $$\mathbb {C}$$C). This allows for an explicitExpand
A Series of Algebras Generalizing the Octonions and Hurwitz-Radon Identity
We study non-associative twisted group algebras over $${(\mathbb{Z}_2)^n}$$ with cubic twisting functions. We construct a series of algebras that extend the classical algebra of octonions in the sameExpand
Typical ranks for 3-tensors, nonsingular bilinear maps and determinantal ideals
Let $m,n\geq 3$, $(m-1)(n-1)+2\leq p\leq mn$, and $u=mn-p$. The set $\mathbb{R}^{u\times n\times m}$ of all real tensors with size $u\times n\times m$ is one to one corresponding to the set ofExpand
Extremal set theory, cubic forms on $\mathbb{F}_2^n$ and Hurwitz square identities
We consider a family, $\mathcal{F}$, of subsets of an $n$-set such that the cardinality of the symmetric difference of any two elements $F,F'\in\mathcal{F}$ is not a multiple of 4. We prove that theExpand
On families of anticommuting matrices
  • P. Hrubes
  • Computer Science, Mathematics
  • FLAP
  • 2017
TLDR
It is conjecture that $\hbox{rk} (e_{1}^{2})+\hbox(e_{2}^{ 2)+\cdots+\ hbox{ rk}(e_k}^2})\leq O(n\log n)$, and some results in this direction are proved. Expand
On orthogonal tensors and best rank-one approximation ratio
TLDR
A connection between the (non)existence of real orthogonal tensors of order three and the classical Hurwitz problem on composition algebras can be established: existence of Orthogonal Tensors of size is equivalent to the admissibility of the triple $[\ell,m,n]$ to the Hurwitzproblem. Expand
...
1
2
3
4
5
...