Über die Gleichung neunten Grades

@article{HilbertberDG,
  title={{\"U}ber die Gleichung neunten Grades},
  author={David R. Hilbert},
  journal={Mathematische Annalen},
  volume={97},
  pages={243-250}
}
  • D. Hilbert
  • Published 1 December 1927
  • Mathematics
  • Mathematische Annalen
Die Mehrzahl derjenigen Probleme, die ich in meinem Vortrage „Mathematische Probleme“1 genannt hatte, und die verschiedenen Gebieten der Mathematik angehoren, sind seitdem auf mannigfache Weise erfolgreich behandelt worden. In der folgenden Mitteilung mochte ich auf einige dieser Probleme zuruckkommen, und zwar auf solche, die zu ihrer Behandlung rein algebraische Hilfsmittel und Methoden erfordern, wahrend die Fragestellungen selbst aus andern, nicht algebraischen Disziplinen entsprungen sind. 
Über den Einfluß von Hilberts Pariser Vortrag über „Mathematische Probleme“ auf die Entwicklung der Mathematik in den letzten dreißig Jahren
Es war eine sch6ne Idee des Vorstandes unserer Gesellschaft, insbesondere des Herrn 13LASCHKE, dab heute in besonderer Form des gr6Bten lebenden Gelehrten gedacht werden soll, den diese Stadt
Removal of 5 Terms from a Degree 21 Polynomial
In 1683 Tschirnhaus claimed to have developed an algebraic method to determine the roots of any degree n polynomial. His argument was flawed, but it spurred a great deal of work by mathematicians
Resolvent degree, Hilbert’s 13th Problem and geometry
We develop the theory of resolvent degree, introduced by Brauer \cite{Br} in order to study the complexity of formulas for roots of polynomials and to give a precise formulation of Hilbert's 13th
BENSON FARB, MARK KISIN AND JESSE WOLFSON WITH AN APPENDIX BY NATE HARMAN
The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic
G.N. Chebotarev's"On the Problem of Resolvents"
This is an English translation of G.N. Chebotarev's classical paper"On the Problem of Resolvents,"which was originally written in Russian and published in Vol. 114, No. 2 of the Scientific
A Computable Kolmogorov Superposition Theorem Vasco Brattka
In the year 1900 in his famous lecture in Paris Hilbert formulated 23 challenging problems which inspired many ground breaking mathematical investigations in the last century. Among these problems
Tschirnhaus transformations after Hilbert
Let RD(n) denote the minimum d for which there exists a formula for the roots of the general degree n polynomial using only algebraic functions of d or fewer variables. In 1927, Hilbert sketched how
Modular functions and resolvent problems
The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic
Translation of Tschebotarow's "The Problem of Resolvents and Critical Manifolds"
This is an English translation of "The Problem of Resolvents and Critical Manifolds" by Tschebotarow/Chebotarev. In this article, Chebotarev explains his work on resolvent problems using critical
...
...