Über die Blochsche Konstante

@article{Ahlfors1937berDB,
  title={{\"U}ber die Blochsche Konstante},
  author={Lars Valerian Ahlfors and Helmut Grunsky},
  journal={Mathematische Zeitschrift},
  year={1937},
  volume={42},
  pages={671-673}
}

Ahlfors circle maps and total reality: from Riemann to Rohlin

This is a prejudiced survey on the Ahlfors (extremal) function and the weaker {\it circle maps} (Garabedian-Schiffer's translation of "Kreisabbildung"), i.e. those (branched) maps effecting the

Non-Archimedean holomorphic maps and the Ahlfors islands theorem

We present a p-adic and non-archimedean version of some classical complex holomorphic function theory. Our main result is an analogue of the Five Islands Theorem from Ahlfors' theory of covering

On the Bloch constant

This course presents a survey on Bloch constants for analytic mappings, meromorphic mappings and harmonic mappings of one variable and of several variables, including elementary concepts and

Dilation theory A century of distancing from the frontiers

Analytic functions, despite exhibiting very satisfactory behavior inside their domains of definition, e.g., being infinitely differentiable and having power series representations, could be quite

Bloch’s theorem for heat mappings

  • J. Cortissoz
  • Mathematics
    Rendiconti del Seminario Matematico della Università di Padova
  • 2022
In this paper we give a proof via the contraction mapping principle of a Bloch-type theorem for (normalised) heat Bochner-Takahashi K-mappings, that is, mappings that are solutions to the heat

Extremal determinants of Laplace–Beltrami operators for rectangular tori

In this work we study the determinant of the Laplace–Beltrami operator on rectangular tori of unit area. We will see that the square torus gives the extremal determinant within this class of tori.

A Note to the Reader

Extremal determinants of Laplace–Beltrami operators for rectangular tori

In this work we study the determinant of the Laplace–Beltrami operator on rectangular tori of unit area. We will see that the square torus gives the extremal determinant within this class of tori.

On Bloch's Theorem for Heat Maps

In this paper we give a proof via the contraction mapping principle of a Bloch-type theorem for normalised Bochner-Takahashi $K$-mappings, which are solutions to equations of the form $Lu=0$, where

References

Über die Blochsche Konstante und zwei verwandte Weltkonstanten

DigiZeitschriften e.V. gewährt ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dokuments. Dieses Dokument ist ausschließlich für den persönlichen,