Über Annäherungswerte algebraischer Zahlen.

@article{ThueberAA,
  title={{\"U}ber Ann{\"a}herungswerte algebraischer Zahlen.},
  author={Axel Thue},
  journal={Journal f{\"u}r die reine und angewandte Mathematik (Crelles Journal)},
  volume={1909},
  pages={284 - 305}
}
  • Axel Thue
  • Mathematics
  • Journal für die reine und angewandte Mathematik (Crelles Journal)
----------------------------------------------------Nutzungsbedingungen DigiZeitschriften e.V. gewährt ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dokuments. Dieses Dokument ist ausschließlich für den persönlichen, nicht kommerziellen Gebrauch bestimmt. Das Copyright bleibt bei den Herausgebern oder sonstigen Rechteinhabern. Als Nutzer sind Sie sind nicht dazu berechtigt, eine Lizenz zu übertragen, zu transferieren oder an Dritte weiter zu… 

Approximation algebraischer Zahlen

ersetzt werden kann. Mit YIilfe hiervon bewies dann Thue seinen bekannten Satz: Bedeutet U (x, y) eine homogene biniire Form mit rationalen Koeffizienten, die nieht Potenz einer linearen oder

Zionist Internationalism through Number Theory: Edmund Landau at the Opening of the Hebrew University in 1925

Argument This article gives the background to a public lecture delivered in Hebrew by Edmund Landau at the opening ceremony of the Hebrew University in Jerusalem in 1925. On the surface, the lecture

The Many Faces of the Subspace Theorem (after Adamczewski, Bugeaud, Corvaja, Zannier...)

During the last decade the Subspace Theorem found several quite unexpected applications, mainly in the Diophantine Analysis and in the Transcendence Theory. Among the great variety of spectacular

Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale Anzahlschranken

TLDR
Here several efficient growth conditions for the same purpose are presented that are actually satisfied in practice, in particular, by the proofs of Roth's theorem due to Roth himself and to Esnault and Viehweg.

Equations diophantiennes et corps cyclotomiques

This thesis examines some approaches to address Diophantine equations, specifically we focus on the connection between the Diophantine analysis and the theory of cyclotomic fields.First, we propose a

Auxiliary functions in transcendence proofs

We discuss the role of auxiliary functions in the development of transcendental number theory. Earlier auxiliary functions were completely explicit. The earliest transcendence proof is due to

Generalizations of the Gap Principle and the Thue-Siegel Principle, with Applications to Diophantine Equations

In this thesis we develop generalizations of two well-known principles from the theory of Diophantine approximation, namely the gap principle and the Thue-Siegel principle. Our results find their

Axel Thue in context

Axel Thue’s works, in particular his celebrated paper, “Über Annäherungswerte algebraischer Zahlen,” are usually perceived as solitary gems in the mathematics of their time. I argue here that it is

Parametrized Thue Equations--A Survey (解析的整数論とその周辺 研究集会報告集)

We consider families of parametrized Thue equations Fa(X, Y ) = ±1, a ∈ , where Fa ∈ [a][X,Y ] is a binary irreducible form with coefficients which are polynomials in some parameter a. We give a

Thue's Theorem in positive characteristic.

In 1909, in this Journal, Thue published bis celebrated Theorem ([12]). This result was an important step, after the Theorem of Liouville, towards Roth's Theorem, which was established in 1955 only,
...