Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes
@article{Ehrhard1986lmentsEP, title={{\'E}l{\'e}ments extr{\'e}maux pour les in{\'e}galit{\'e}s de Brunn-Minkowski gaussiennes}, author={Antoine Ehrhard}, journal={Annales De L Institut Henri Poincare-probabilites Et Statistiques}, year={1986}, volume={22}, pages={149-168} }
On etudie les ensembles pour lesquels l'egalite est atteinte dans les inegalites de C. Borell et de Brunn-Minkowski gaussienne en dimension finie. On caracterise aussi les fonctions telles que l'inegalite isoperimetrique d'Ehrhard (1984) se reduit a une egalite
44 Citations
The Brunn-Minkowski inequality
- Mathematics
- 2002
In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The Brunn-Minkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality…
Gaussian Brunn-Minkowski inequalities
- Mathematics
- 2010
A detailed investigation is undertaken into Brunn-Minkowski-type inequalities for Gauss measure. A Gaussian dual Brunn-Minkowski inequality is proved, together with precise equality conditions, and…
On the isoperimetric problem in Euclidean space with density
- Mathematics
- 2006
We study the isoperimetric problem for Euclidean space endowed with a continuous density. In dimension one, we characterize isoperimetric regions for a unimodal density. In higher dimensions, we…
On isoperimetric inequalities with respect to infinite measures
- Mathematics
- 2011
We study isoperimetric problems with respect to infinite measures on $R ^n$. In the case of the measure $\mu$ defined by $d\mu = e^{c|x|^2} dx$, $c\geq 0$, we prove that, among all sets with given…
LINEAR ELLIPTIC EQUATIONS AND GAUSS MEASURE
- Mathematics
- 2003
In this paper we study a Dirichlet problem relative to a linear elliptic equation with lower-order terms, whose ellipticity condition is given in terms of the function φ(x)= (2π)− n 2 exp(−|x|/2) ,…
ON THE ISOPERIMETRIC DEFICIT IN GAUSS
- Mathematics
- 2010
We prove a sharp quantitative version of the isoperimetric inequality in the space Rn endowed with the Gaussian measure.
A universal bound in the dimensional Brunn-Minkowski inequality for log-concave measures
- Mathematics
- 2021
We show that for any log-concave measure μ on R, any pair of symmetric convex sets K and L, and any λ ∈ [0, 1], μ((1 − λ)K + λL) ≥ (1 − λ)μ(K) + λμ(L) , where cn ≥ n. This constitutes progress…
Essential connectedness and the rigidity problem for Gaussian symmetrization
- Mathematics
- 2013
We provide a geometric characterization of rigidity of equality cases in Ehrhard's symmetrization inequality for Gaussian perimeter. This condition is formulated in terms of a new measure-theoretic…
An optimal Poincaré-Wirtinger inequality in Gauss space
- Mathematics
- 2012
Let $\Omega$ be a smooth, convex, unbounded domain of $\R^N$. Denote by $\mu_1(\Omega)$ the first nontrivial Neumann eigenvalue of the Hermite operator in $\Omega$; we prove that $\mu_1(\Omega) \ge…
References
SHOWING 1-9 OF 9 REFERENCES
Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes
- Mathematics
- 1984
© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1984, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.…
nnales de l'Institut Henri Poincaré -Probabilités et Statistiques
V = BT x t2 [, et pour tout 0, 1, 2 }, xi = (zi, 0) ; les éléments F, xo, xi, x2, I et V
- On pose alors m = n + 1, F = A( f )
COROLLAIRE. -Soit f une fonction lipschitzienne de vers f~8
0, alors f garde un signe constant sur [Rn et il existe un vecteur unitaire w de f~n tel que
Eu(F)). Cela montre que Om{A(f)) >