• Corpus ID: 18610281

: Nonlinear stability of bifur ating front solutions 1

@inproceedings{kmann2007NS,
  title={: Nonlinear stability of bifur ating front solutions 1},
  author={Jean-Pierre E kmann and Guido S hneider},
  year={2007}
}

References

SHOWING 1-10 OF 30 REFERENCES
Non-linear Stability of Modulated Fronts¶for the Swift–Hohenberg Equation
Abstract: We consider front solutions of the Swift–Hohenberg equation ∂tu= -(1+ ∂x2)2u + ɛ2u -u3. These are traveling waves which leave in their wake a periodic pattern in the laboratory frame. Using
Bifur ating fronts for the TaylorCouette problem in in nite ylinders
  • J . Appl . Math . Phys . ( ZAMP )
  • 1999
Existen e and nonexisten e of global solutions for a semilinear heat equation
  • Ar h . Rat . Me h . Anal .
  • 1997
Mathemati al analysis of sideband instabilities with appli ation to RaleighB  enard onve tion
  • J . NonlinearS ien e
  • 1997
Lo al stability of riti al fronts in nonlinear paraboli partial di erential equations
  • Nonlinearity
  • 1994
On the validity of GinzburgLandau ' s equation
  • Nonlinear S ien e Today
  • 1994
Stability of moving fronts in the Ginzburg-Landau equation
We use Renormalization Group ideas to study stability of moving fronts in the Ginzburg-Landau equation in one spatial dimension. In particular, we prove stability of the real fronts under complex
The CouetteTaylor problem
  • Appl . Math . S ien es
  • 1994
The non - linear stability of front solutions for paraboli partial di erential equations
  • Commun . Math . Phys .
  • 1994
The GinzburgLandau equation is an attra tor
  • J . Nonlinear S ien e
  • 1993
...
1
2
3
...