Corpus ID: 14629029

$sl_n$ level 1 conformal blocks divisors on $\bar{M}_{0,n}$

@article{Arap2010sl_nL1,
  title={\$sl_n\$ level 1 conformal blocks divisors on \$\bar\{M\}_\{0,n\}\$},
  author={M. Arap and A. Gibney and James Stankewicz and D. Swinarski},
  journal={arXiv: Algebraic Geometry},
  year={2010}
}
  • M. Arap, A. Gibney, +1 author D. Swinarski
  • Published 2010
  • Mathematics
  • arXiv: Algebraic Geometry
  • We study a family of semiample divisors on the moduli space $\bar{M}_{0,n}$ that come from the theory of conformal blocks for the Lie algebra $sl_n$ and level 1. The divisors we study are invariant under the action of $S_n$ on $\bar{M}_{0,n}$. We compute their classes and prove that they generate extremal rays in the cone of symmetric nef divisors on $\bar{M}_{0,n}$. In particular, these divisors define birational contractions of $\bar{M}_{0,n}$, which we show factor through reduction morphisms… CONTINUE READING
    8 Citations

    Figures from this paper.

    References

    SHOWING 1-10 OF 31 REFERENCES
    Nef divisors on $\bar{M}_{0,n}$ from GIT
    • 13
    • PDF
    Contractible Extremal Rays on \overline{M}_{0,n}
    • 26
    • PDF
    Fulton's conjecture for M̅0, 7
    • 18
    • PDF
    TOWARDS THE AMPLE CONE OF Mg,n
    • 113
    • PDF
    Numerical criteria for divisors on M g to be ample
    • 19
    • PDF
    Chern classes of conformal blocks
    • 40
    • PDF
    The mori cones of moduli spaces of pointed curves of small genus
    • 57
    • PDF
    CONTRACTIBLE EXTREMAL RAYS ON M0,n
    • 24
    • PDF
    Moduli spaces of weighted pointed stable curves
    • 230
    • PDF