$L^p\to L^q$ bounds for spherical maximal operators
@article{Anderson2019LptoLB, title={\$L^p\to L^q\$ bounds for spherical maximal operators}, author={T. Anderson and K. Hughes and J. Roos and A. Seeger}, journal={arXiv: Classical Analysis and ODEs}, year={2019} }
Let $f\in L^p(\mathbb{R}^d)$, $d\ge 3$, and let $A_t f(x)$ the average of $f$ over the sphere with radius $t$ centered at $x$. For a subset $E$ of $[1,2]$ we prove close to sharp $L^p\to L^q$ estimates for the maximal function $\sup_{t\in E} |A_t f|$. A new feature is the dependence of the results on both the upper Minkowski dimension of $E$ and the Assouad dimension of $E$. The result can be applied to prove sparse domination bounds for a related global spherical maximal function.
Figures from this paper
Figures
3 Citations
References
SHOWING 1-10 OF 33 REFERENCES
New dimension spectra: finer information on scaling and homogeneity
- Mathematics
- 2016
- 45
- Highly Influential
- PDF