# $H$-convergence for equations depending on monotone operators in Carnot groups

@article{Maione2019HconvergenceFE, title={\$H\$-convergence for equations depending on monotone operators in Carnot groups}, author={Alberto Maione}, journal={arXiv: Analysis of PDEs}, year={2019} }

Let $\Omega$ be an open and bounded subset of a Carnot Group $\mathbb{G}$ and $2\leq p<\infty$. In this paper we present some results related to the convergence of solutions of Dirichlet problems for sequences of monotone operators. The aim of this paper is to give a generalization of well-known results of Tartar, De Arcangelis-Serra Cassano and Baldi-Franchi-Tchou-Tesi in more general frameworks.

#### 3 Citations

$\Gamma$-convergence for functionals depending on vector fields. II. Convergence of minimizers

- Mathematics
- 2021

Given a family of locally Lipschitz vector fieldsX(x) = (X1(x), . . . , Xm(x)) on R n, m ≤ n, we study integral functionals depending on X . Using the results in [MPSC1], we study the convergence of… Expand

$G$-convergence of elliptic and parabolic operators depending on vector fields

- Mathematics
- 2021

We consider sequences of elliptic and parabolic operators in divergence form where the operators depend on a family of vector fields. We show, using a unitary approach, i.e., taking suitable… Expand

Integral Representation of Local Left–Invariant Functionals in Carnot Groups

- Mathematics
- 2019

Abstract The aim of this note is to prove a representation theorem for left–invariant functionals in Carnot groups. As a direct consequence, we can also provide a Г-convergence result for a smaller… Expand

#### References

SHOWING 1-10 OF 39 REFERENCES

$\Gamma$-convergence for functionals depending on vector fields. II. Convergence of minimizers

- Mathematics
- 2021

Given a family of locally Lipschitz vector fieldsX(x) = (X1(x), . . . , Xm(x)) on R n, m ≤ n, we study integral functionals depending on X . Using the results in [MPSC1], we study the convergence of… Expand

G-convergence of monotone operators

- Mathematics
- 1990

Abstract A general notion of G-convergence for sequences of maximal monotone operators of the form is introduced in terms of the asymptotic behavior, as h → + ∞, of the solutions u h to the equations… Expand

On the convergence of solutions of degenerate elliptic equations in divergence form

- Mathematics
- 1994

SummaryIt is studied the convergence of solutions of Dirichlet problems for sequences of monotone operators of the type — div (ah (x, D·)), where the functions ah verify the following degenerate… Expand

Asymptotic Behaviours in Fractional Orlicz–Sobolev Spaces on Carnot Groups

- Mathematics
- 2019

In this article, we define a class of fractional Orlicz–Sobolev spaces on Carnot groups, and in the spirit of the celebrated results of Bourgain–Brezis–Mironescu and of Maz’ya–Shaposhnikova, we study… Expand

Homogenization of monotone operators in divergence form with x-dependent multivalued graphs

- Mathematics
- 2004

In a previous paper [4], we proved the existence of solutions to −div a(x, grad u) = f , together with appropriate boundary conditions, whenever a(x, e) belongs, for every fixed x, to a certain class… Expand

Compensated compactness for differential forms in Carnot groups and applications

- Mathematics
- 2010

Abstract In this paper we prove a compensated compactness theorem for differential forms of the intrinsic complex of a Carnot group. The proof relies on an L s -Hodge decomposition for these forms.… Expand

Homogenization of almost periodic monotone operators

- Mathematics
- 1992

Abstract We determine some sufficient conditions for the G-convergence of sequences of quasi-linear monotone operators, together with an asymptotic formula for the G-limit. We then prove a… Expand

div-curl Type Theorem, H-Convergence, and Stokes Formula in the Heisenberg Group

- Mathematics
- 2006

In this paper, we prove a div–curl type theorem in the Heisenberg group ℍ1, and then we develop a theory of H-convergence for second order differential operators in divergence form in ℍ1. The… Expand

Γ-convergence for functionals depending on vector fields. I. Integral representation and compactness

- Mathematics
- 2020

Abstract Given a family of locally Lipschitz vector fields X ( x ) = ( X 1 ( x ) , … , X m ( x ) ) on R n , m ≤ n , we study functionals depending on X. We prove an integral representation for local… Expand

Stratified Lie groups and potential theory for their sub-Laplacians

- Mathematics
- 2007

The existence, for every sub-Laplacian, of a homogeneous fundamental solution smooth out of the origin, plays a crucial role in the book. This makes it possible to develop an exhaustive Potential… Expand