guillerMo díaz-pulido

Learn More
BACKGROUND The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL(More)
Ocean warming and acidification from increasing levels of atmospheric CO 2 represent major global threats to coral reefs, and are in many regions exacerbated by local-scale disturbances such as overfishing and nutrient enrichment. Our understanding of global threats and local-scale disturbances on reefs is growing, but their relative contribution to reef(More)
BACKGROUND Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the(More)
Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO(2) may be an additional process(More)
Human-induced ocean acidification and warming alter seawater carbonate chemistry reducing the calcification of reef-building crustose coralline algae (CCA), which has implications for reef stability. However, due to the presence of multiple carbonate minerals with different solubilities in seawater, the algal mineralogical responses to changes in carbonate(More)
Increasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer(More)
summAry zx Massive coral bleaching occurred in Southern Tropical America during unusually high sea surface temperatures in 2005. The timing of bleaching varied throughout the region. zx Surveys at 156 sites in Brazil, Colombia and Venezuela show that 2005 was the region's most severe bleaching year, with most bleaching in shallow zones, but the severity(More)
Since the industrial revolution, anthropogenic CO₂ emissions have caused ocean acidification, which particularly affects calcified organisms. Given the fan-like calcified fronds of the brown alga Padina pavonica, we evaluated the acute (short-term) effects of a sudden pH drop due to a submarine volcanic eruption (October 2011-early March 2012) affecting(More)
Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common(More)
Crustose coralline algae (CCA), a group of calcifying red algae found commonly in benthic marine ecosystems worldwide, perform essential ecological functions on coral reefs, including creating benthic substrate, stabilizing the reef structure and inducing coral settlement. An important feature of CCA is the ability to keep their surfaces free of epiphytic(More)