Learn More
The antimicrobial activity of 3-methyl-5-isopropyl (or ethyl) 6-methyl-4-nitrophenyl-1,4-dihydropyridine-3,5-dicarboxylate derivatives was evaluated. Prokaryotes (bacteria) appeared to be more sensitive to their antimicrobial activity than were eukaryotes (filamentous fungi). The best antibacterial activity was shown by derivative 33, which was able to(More)
Two comparative sets of mono-/dinitroxyl amides were designed and prepared. The novel TEMPO and/or PROXYL derivatives were fully characterised and their spin, redox and antimicrobial properties were determined. Cyclic voltammetry revealed (quasi)reversible redox behavior for most of the studied radicals. Moreover, the electron-withdrawing substituents(More)
  • 1