Zuzana Kazmerova

Learn More
Neurodegeneration, induced by misfolded tau protein, and neuroinflammation, driven by glial cells, represent the salient features of Alzheimer's disease (AD) and related human tauopathies. While tau neurodegeneration significantly correlates with disease progression, brain inflammation seems to be an important factor in regulating the resistance or(More)
Neuroinflammation plays a key role in the pathogenesis of Alzheimer's disease and related tauopathies. We have previously shown that expression of nonmutated human truncated τ (151-391, 4R), derived from sporadic Alzheimer's disease, induced neurofibrillary degeneration accompanied by microglial and astroglial activation in the brain of transgenic rats. The(More)
We have developed a stably transfected human cell model for Alzheimer's disease with doxycycline-inducible expression of human misfolded truncated tau protein (AT tau). We have showed that AT tau reduced the metabolic activity of the AT tau cells, slowed down cell proliferation, and induced caspase-3-independent apoptosis-like programmed cell death,(More)
Abnormal misfolded tau protein is a driving force of neurofibrillary degeneration in Alzheimer's disease. It has been shown that tau oligomers play a crucial role in the formation of intracellular neurofibrillary tangles. They are intermediates between soluble tau monomers and insoluble tau filaments and are suspected contributors to disease pathogenesis.(More)
Synaptic failure and neurofibrillary degeneration are two major neuropathological substrates of cognitive dysfunction in Alzheimer's disease (AD). Only a few studies have demonstrated a direct relationship between these two AD hallmarks. To investigate tau mediated synaptic injury we used rat model of tauopathy that develops extensive neurofibrillary(More)
Human neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease represent unmet medical need. There is no effective cure available on the market. Several novel therapeutic approaches targeting fundamental features of these disorders have been proposed during the last two decades. Cell therapy represents one of the most promising(More)
BACKGROUND Neurodegeneration induced by misfolded tau protein and neuroinflammation represent the major hallmarks of human tauopathies including Alzheimer's disease (AD). While tau driven neurodegeneration significantly correlates with disease progression, inflammation is considered to be an important factor regulating the resistance or susceptibility to(More)
  • 1