Learn More
The molecular mechanisms of stress tolerance and the use of modern genetics approaches for the improvement of drought stress tolerance have been major focuses of plant molecular biologists. In the present study, we cloned the Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 (GhSnRK2) gene and investigated its functions in transgenic(More)
To get a broader view on the molecular mechanisms underlying somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.), global analysis of cotton transcriptome dynamics during SE in different sister lines was performed using RNA-Seq. A total of 204 349 unigenes were detected by de novo assembly of the 214 977 462 Illumina reads. The quantitative reverse(More)
Cotton (Gossypium hirsutum) is the major source of natural textile fibers. Brassinosteroids (BRs) play crucial roles in regulating fiber development. The molecular mechanisms of BRs in regulating fiber elongation, however, are poorly understood. pagoda1 (pag1) was identified via an activation tagging genetic screen and characterized by genome walking and(More)
Calcium signaling regulates many developmental processes in plants. Calmodulin (CaM) is one of the most conserved calcium sensors and has a flexible conformation in eukaryotes. The molecular functions of CaM are unknown in cotton, which is a major source of natural fiber. In this study, a Gossypium hirsutum L.CaM7-like gene was isolated from upland cotton.(More)
Upland cotton (Gossypium hirsutum) is one of the most recalcitrant species for in vitro plant regeneration through somatic embryogenesis. Callus from only a few cultivars can produce embryogenic callus (EC), but the mechanism is not well elucidated. Here we screened a cultivar, CRI24, with high efficiency of EC produce. The expression of genes relevant to(More)
Somatic embryogenesis is a useful tool for gene transfer and propagation of plants. AGAMOUS-LIKE15 (AGL15) promotes somatic embryogenesis in many plant species. In this study, three homologous AGL15 genes were isolated from Gossypium hirsutum L., namely GhAGL15-1, GhAGL15-3, and GhAGL15-4. Their putative proteins contained a highly conserved MADS-box(More)
Somatic embryo development (SED) in upland cotton shows low frequencies of embryo maturation and plantlet regeneration. Progress in increasing the regeneration rate has been limited. Here a global analysis of proteome dynamics between globular and cotyledonary embryos was performed using isobaric tags for relative and absolute quantitation to explore(More)
The first high-density linkage map was constructed to identify quantitative trait loci (QTLs) for somatic embryogenesis (SE) in cotton ( Gossypium hirsutum L.) using leaf petioles as explants. Cotton transformation is highly limited by only a few regenerable genotypes and the lack of understanding of the genetic and molecular basis of somatic embryogenesis(More)
Hybrid vigor contributes in a large way to the yield and quality of cotton (Gossypium hirsutum) fiber. Although microRNAs play essential regulatory roles in flower induction and development, it is still unclear if microRNAs are involved in male sterility, as the regulatory molecular mechanisms of male sterility in cotton need to be better defined. In this(More)
WUSCHEL-related homeobox (WOX) family members play significant roles in plant growth and development, such as in embryo patterning, stem-cell maintenance, and lateral organ formation. The recently published cotton genome sequences allow us to perform comprehensive genome-wide analysis and characterization of WOX genes in cotton. In this study, we identified(More)