Zuley Rivera-Alvidrez

Learn More
Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability, the long-term operation(More)
Understanding the relationship between neural activity in motor cortex and muscle activity during movements is important both for basic science and for the design of neural prostheses. While there has been significant work in decoding muscle EMG from neural data, decoders often require many parameters which make the analysis susceptible to overfitting,(More)
Interactions among neurons are a key component of neural signal processing. Rich neural data sets potentially containing evidence of interactions can now be collected readily in the laboratory, but existing analysis methods are often not sufficiently sensitive and specific to reveal these interactions. Generalized linear models offer a platform for(More)
Motion-sensitive neurons in the visual systems of many species, including humans, exhibit a depression of motion responses immediately after being exposed to rapidly moving images. This motion adaptation has been extensively studied in flies, but a neuronal mechanism that explains the most prominent component of adaptation, which occurs regardless of the(More)
  • 1