Zubair M. Ahmed

Learn More
Stereocilia are microvilli-derived mechanosensory organelles that are arranged in rows of graded heights on the apical surface of inner-ear hair cells. The 'staircase'-like architecture of stereocilia bundles is necessary to detect sound and head movement, and is achieved through differential elongation of the actin core of each stereocilium to a(More)
Sound and acceleration are detected by hair bundles, mechanosensory structures located at the apical pole of hair cells in the inner ear. The different elements of the hair bundle, the stereocilia and a kinocilium, are interconnected by a variety of link types. One of these links, the tip link, connects the top of a shorter stereocilium with the lateral(More)
Recessive splice site and nonsense mutations of PCDH15, encoding protocadherin 15, are known to cause deafness and retinitis pigmentosa in Usher syndrome type 1F (USH1F). Here we report that non-syndromic recessive hearing loss (DFNB23) is caused by missense mutations of PCDH15. This suggests a genotype-phenotype correlation in which hypomorphic alleles(More)
The inner ear has fluid-filled compartments of different ionic compositions, including the endolymphatic and perilymphatic spaces of the organ of Corti; the separation from one another by epithelial barriers is required for normal hearing. TRIC encodes tricellulin, a recently discovered tight-junction (TJ) protein that contributes to the structure and(More)
Mutant alleles of the gene encoding cadherin 23 are associated with Usher syndrome type 1 (USH1D), isolated deafness (DFNB12) in humans, and deafness and circling behavior in waltzer (v) mice. Stereocilia of waltzer mice are disorganized and the kinocilia misplaced, indicating the importance of cadherin 23 for hair bundle development. Cadherin 23 was(More)
Positional cloning of hereditary deafness genes is a direct approach to identify molecules and mechanisms underlying auditory function. Here we report a locus for dominant deafness, DFNA36, which maps to human chromosome 9q13-21 in a region overlapping the DFNB7/B11 locus for recessive deafness. We identified eight mutations in a new gene, transmembrane(More)
Targeted genome capture combined with next-generation sequencing was used to analyze 2.9 Mb of the DFNB79 interval on chromosome 9q34.3, which includes 108 candidate genes. Genomic DNA from an affected member of a consanguineous family segregating recessive, nonsyndromic hearing loss was used to make a library of fragments covering the DFNB79 linkage(More)
Sensorineural hearing loss is genetically heterogeneous. Here, we report that mutations in CIB2, which encodes a calcium- and integrin-binding protein, are associated with nonsyndromic deafness (DFNB48) and Usher syndrome type 1J (USH1J). One mutation in CIB2 is a prevalent cause of deafness DFNB48 in Pakistan; other CIB2 mutations contribute to deafness(More)
Human chromosome 11 harbors two Usher type I loci, USHIB and USHIC, which encode myosin VIIA and harmonin, respectively. The USHIC locus overlaps the reported critical interval for nonsyndromic deafness locus DFNB18. We found an IVS12+5G→C mutation in the USHIC gene, which is associated with nonsyndromic recessive deafness (DFNB18) segregating in the(More)
Cosegregation of profound, congenital deafness with markers on chromosome 6q13 in three Pakistani families defines a new recessive deafness locus, DFNB37. Haplotype analyses reveal a 6-cM linkage region, flanked by markers D6S1282 and D6S1031, that includes the gene encoding unconventional myosin VI. In families with recessively inherited deafness, DFNB37,(More)