Learn More
Current semiautomated magnetic resonance (MR)-based brain segmentation and volume measurement methods are complex and not sufficiently accurate for certain applications. We have developed a simpler, more accurate automated algorithm for whole-brain segmentation and volume measurement in T(1)-weighted, three-dimensional MR images. This histogram-based brain(More)
During prolonged submaximal muscle contractions, electromyographic (EMG) signals typically increase as a result of increasing motor unit activities to compensate for fatigue-induced force loss in the muscle. It is thought that cortical signals driving the muscle to higher activation levels also increases, but this has never been experimentally demonstrated.(More)
PURPOSE To develop an automated method for identification of the cerebella on magnetic resonance (MR) images of patients with medulloblastoma. MATERIALS AND METHODS The method used a template constructed from 10 patients' aligned MR head images, and the contour of this template was superimposed on the aligned data set of a given patient as the starting(More)
To determine the role of the nerve on the establishment of myofiber diversity in skeletal muscles, the lumbosacral spinal cord of 14-day gestation mice (E14) was laser ablated, and the accumulation of the myosin alkali light chains (MLC) mRNAs in crural (hindleg) muscles was evaluated just prior to birth with in situ hybridization. Numbers of molecules of(More)
In this study, volumes of the whole brain, hemispheres, and frontal lobes of young and elderly adults were quantified by an automated method. Effects of age, sex, and side on absolute and relative volumes of the brain structures were evaluated. Compared with the young group, elderly participants showed a 15% volume loss in the whole brain and hemispheres,(More)
Identification of human brain structures in MR images comprises an area of increasing interest, which also presents numerous methodological challenges. Here we describe a new knowledge-based automated method designed to identify several major brain sulci and then to define the frontal lobes by using the identified sulci as landmarks. To identify brain(More)
Central excitability does not limit postfatigue voluntary activation of quadriceps femoris contractions A comparison of central aspects of fatigue in submaximal and maximal voluntary including high-resolution figures, can be found at: Updated information and services
  • 1