Learn More
This paper describes a study into the potential of plants to acclimate to light environments that fluctuate over time periods between 15 min and 3 h. Plants of Arabidopsis thaliana (L.) Heynh., Digitalis purpurea L. and Silene dioica (L.) Clairv. were grown at an irradiance 100 μmol m-2 s-1. After 4–6 weeks, they were transferred to light regimes that(More)
The impacts of various nitrogen sources, i.e. NO− 3, NH4 + or NH4NO3 in combination with gaseous NH3, on nitrogen-, carbon- and water-use efficiency and 13C discrimination (δ13C) by plants of the C3 species Triticum aestivum L. (wheat) and the C4 species Zea mays L. (maize) were studied. Triticum aestivum and Z. mays were hydroponically grown with 2 mol ·(More)
Cytosolic and vacuolar pH changes caused by illumination or a changed composition of the gas phase were monitored in leaves of the NAD malic-enzyme-type C4 plant Amaranthus caudatus L. and the C3 plant Vicia faba L. by recording changes in the fluorescence of pH-indicating dyes which had been fed to the leaves. Light-dependent cytosolic alkalization and(More)
Oscillations of photosynthesis induced in leaves of Vicia faba L. were accompanied by oscillations not only in the pH of the chloroplast stroma, but also by pH oscillations in the cytosol and in the vacuole of leaf mesophyll cells. Cytosolic pH oscillations were in phase with stromal oscillations, but antiparallel to vacuolar pH oscillations. During maxima(More)
Atmospheric ammonia (NH3) from various anthropogenic sources has become a serious problem for natural vegetation. Ammonia not only causes changes in plant nitrogen metabolism, but also affects the acid-base balance of plants. Using the pH-sensitive fluorescent dyes pyranine and esculin, cytosolic and vacuolar pH changes were measured in leaves of C3 and C4(More)
Esculin, a pH-sensitive fluorescent dye, was used to indicate light-dependent pH changes in leaves of Spinacia oleracea L. and Pelargonium zonale L. Shortly after its introduction into the leaves via the transpiration stream, esculin was localized mainly in the symplasm. An increase in its blue fluorescence on illumination with red actinic light indicated(More)
Action spectra in the red region of the spectrum for light-dependent cytosolic alkalization in leaves of C3 plants which also received a low background of blue light differed from the action spectra for light-dependent vacuolar acidification. Light above 680 nm was less effective in supporting the cytosolic alkalization reaction than light below 680 nm. In(More)
Light-induced changes in the fluorescence of the pH-indicating dyes pyranine or 5-(and 6-)carboxy-2′, 7′-dichlorofluorescein (CDCF) which had been fed to leaves were examined to monitor cellular pH changes. After short-term feeding of pyranine (pK 7.3) to leaves of Amaranthus caudatus L., a NAD-malic-enzyme-type C4 plant, vascular bundles and surrounding(More)
  • 1