Learn More
Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important(More)
14-3-3 proteins function as major regulators of primary metabolism and cellular signal transduction in plants. However, their involvement in plant defense and stress responses is largely unknown. In order to better address functions of the rice 14-3-3/GF14 proteins in defense and abiotic stress responses, we examined the rice GF14 family that comprises(More)
An assay was developed to study plant receptor kinase activation and signaling mechanisms. The extracellular leucine-rich repeat (LRR) and transmembrane domains of the Arabidopsis receptor kinase BRI1, which is implicated in brassinosteroid signaling, were fused to the serine/threonine kinase domain of XA21, the rice disease resistance receptor. The(More)
The recessive tall rice (Oryza sativa) mutant elongated uppermost internode (eui) is morphologically normal until its final internode elongates drastically at the heading stage. The stage-specific developmental effect of the eui mutation has been used in the breeding of hybrid rice to improve the performance of heading in male sterile cultivars. We found(More)
Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to(More)
Gibberellins (GAs) form a group of important plant tetracyclic diterpenoid hormones that are involved in many aspects of plant growth and development. Emerging evidence implicates that GAs also play roles in stress responses. However, the role of GAs in biotic stress is largely unknown. Here, we report that knockout or overexpression of the Elongated(More)
BACKGROUND Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies(More)
Oxidative burst, mediated by hydrogen peroxide (H2O2), has been recognized as a key component of plant defense response during an incompatible interaction. To determine if elevated levels of H2O2 lead to cell death, activation of defense genes and enhanced resistance to diverse pathogens, transgenic rice plants expressing a fungal glucose oxidase gene (GOX)(More)
Two QTLs were identified to control panicle length in rice backcross lines, and one QTL qPL6 was finely mapped with potential in high yield breeding. Panicle length (PL) is the key determinant of panicle architecture in rice, and strongly affects yield components, such as grain number per panicle. However, this trait has not been well studied genetically(More)
Fine mapping of the novel thermo-sensitive genic male sterility locus tms9 - 1 in the traditional TGMS line HengnongS-1 revealed that the MALE STERILITY1 homolog OsMS1 is the candidate gene. Photoperiod-thermo-sensitive genic male sterility (P/TGMS) has been widely used in the two-line hybrid rice breeding system. HengnongS-1 is one of the oldest TGMS lines(More)