Learn More
The glial water channel aquaporin-4 (AQP4) has been hypothesized to modulate water and potassium fluxes associated with neuronal activity. In this study, we examined the seizure phenotype of AQP4 -/- mice using in vivo electrical stimulation and electroencephalographic (EEG) recording. AQP4 -/- mice were found to have dramatically prolonged(More)
Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null(More)
Diffusion in brain extracellular space (ECS) is important for nonsynaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. We measured macromolecular diffusion in normally light-inaccessible regions of mouse brain by microfiberoptic epifluorescence photobleaching, in which a fiberoptic with a micron-size tip(More)
Aquaporin-4 (AQP4) is a water transport protein expressed in glial cell plasma membranes, including glial cell foot processes lining the blood-brain barrier. AQP4 deletion in mice reduces cytotoxic brain edema produced by different pathologies. To determine whether AQP4 is rate-limiting for brain water accumulation and whether altered AQP4 expression, as(More)
OBJECTIVE Bypass surgery for brain aneurysms is evolving from extracranial-intracranial (EC-IC) to intracranial-intracranial (IC-IC) bypasses that reanastomose parent arteries, revascularize efferent branches with in situ donor arteries or reimplantation, and reconstruct bifurcated anatomy with grafts that are entirely intracranial. We compared results with(More)
Cerebral edema contributes significantly to morbidity and mortality after brain injury and stroke. Aquaporin-4 (AQP4), a water channel expressed in astrocytes, plays a key role in brain water homeostasis. Genetic variants in other aquaporin family members have been associated with disease phenotypes. However, in human AQP4, only one non-synonymous(More)
BACKGROUND The eyebrow craniotomy is a less invasive alternative approach for accessing anterior skull base lesions, compared to traditional and more extensive exposures. We give a stepwise description of this minimally invasive technique with discussion on the indications, limitations and key aspects of perioperative management. METHODS Positioning of(More)
The regulation of water balance in the brain is crucial. A disruption in this equilibrium causes an increase in brain water content that significantly contributes to the pathophysiology of traumatic brain injury, hydrocephalus, and a variety of neurological disorders. The discovery of the aquaporin (AQP) family of membrane water channels has provided(More)
BACKGROUND The endoscopic transnasal approach is becoming the preferred minimally invasive approach to the pituitary region. We review the key anatomical landmarks, stepwise description of the surgical technique, technical variations, indications, limitations and important aspects of peri-operative management. TECHNIQUE The procedure consists of nasal,(More)
Seizures are important neurologic complications following traumatic brain injury (TBI) and are reported for up to 50% of patients with TBI. Despite several studies, no drug strategy has been able to alter the biological events leading to epileptogenesis. The glial water channel aquaporin-4 (AQP4) was shown to facilitate cytotoxic cell swelling in ischemia(More)