Zsolt Venkei

Learn More
Centromeres provide a region of chromatin upon which kinetochores are assembled in mitosis. Centromeric protein C (CENP-C) is a core component of this centromeric chromatin that, when depleted, prevents the proper formation of both centromeres and kinetochores. CENP-C localizes to centromeres throughout the cell cycle via its C-terminal part, whereas its(More)
Levels of the selective autophagy substrate p62 have been established in recent years as a specific readout for basal autophagic activity. Here we compared different experimental approaches for using this assay in Drosophila larvae. Similar to the more commonly used western blots, quantifying p62 dots in immunostained fat body cells of L3 stage larvae(More)
The formation of kinetochores shortly before each cell division is a prerequisite for proper chromosome segregation. The synchronous mitoses of Drosophila syncytial embryos have provided an ideal in vivo system to follow kinetochore assembly kinetics and so address the question of how kinetochore formation is regulated. We found that the nuclear exclusion(More)
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized(More)
The Mis12/MIND kinetochore complex is composed of 4 subunits of which the Dsn1 protein is a crucial component in all organisms where it has been identified. In Caenorhabditis elegans, depletion of Dsn1 results in a so-called "kinetochore null" phenotype, hence Dsn1's alternative name KNL3. In human, Dsn1 is required to shape an interface between the Mis12(More)
The kinetochore is a dynamic multiprotein complex assembled at the centromere in mitosis. Exactly how the structure of the kinetochore changes during mitosis and how its individual components contribute to chromosome segregation is largely unknown. Here we have focused on the contribution of the Mis12 complex to kinetochore assembly and function throughout(More)
As endocytic uptake of the Antennapedia homeodomain-derived penetratin peptide (RQIKIWFQNRRMKWKK) is finally being revealed, some of the early views about penetratin need to be reconsidered. Endocytic uptake seems to contradict the indispensability of tryptophans and also the minimum length of 16 amino acid residues for efficient internalization. To revise(More)
  • 1